935 resultados para Motor vehicles Motors Exhaust gas Health aspects
Resumo:
Dissertação de Mestrado, Gerontologia Social, Escola Superior de Educação e Comunicação, Escola Superior de Saúde, Universidade do Algarve, 2016
Resumo:
The United States transportation industry is predicted to consume approximately 13 million barrels of liquid fuel per day by 2025. If one percent of the fuel energy were salvaged through waste heat recovery, there would be a reduction of 130 thousand barrels of liquid fuel per day. This dissertation focuses on automotive waste heat recovery techniques with an emphasis on two novel techniques. The first technique investigated was a combination coolant and exhaust-based Rankine cycle system, which utilized a patented piston-in-piston engine technology. The research scope included a simulation of the maximum mass flow rate of steam (700 K and 5.5 MPa) from two heat exchangers, the potential power generation from the secondary piston steam chambers, and the resulting steam quality within the steam chamber. The secondary piston chamber provided supplemental steam power strokes during the engine's compression and exhaust strokes to reduce the pumping work of the engine. A Class-8 diesel engine, operating at 1,500 RPM at full load, had a maximum increase in the brake fuel conversion efficiency of 3.1%. The second technique investigated the implementation of thermoelectric generators on the outer cylinder walls of a liquid-cooled internal combustion engine. The research scope focused on the energy generation, fuel energy distribution, and cylinder wall temperatures. The analysis was conducted over a range of engine speeds and loads in a two cylinder, 19.4 kW, liquid-cooled, spark-ignition engine. The cylinder wall temperatures increased by 17% to 44% which correlated well to the 4.3% to 9.5% decrease in coolant heat transfer. Only 23.3% to 28.2% of the heat transfer to the coolant was transferred through the TEG and TEG surrogate material. The gross indicated work decreased by 0.4% to 1.0%. The exhaust gas energy decreased by 0.8% to 5.9%. Due to coolant contamination, the TEG output was not able to be obtained. TEG output was predicted from cylinder wall temperatures and manufacturer documentation, which was less than 0.1% of the cumulative heat release. Higher TEG conversion efficiencies, combined with greater control of heat transfer paths, would be needed to improve energy output and make this a viable waste heat recovery technique.
Resumo:
For the past three decades the automotive industry is facing two main conflicting challenges to improve fuel economy and meet emissions standards. This has driven the engineers and researchers around the world to develop engines and powertrain which can meet these two daunting challenges. Focusing on the internal combustion engines there are very few options to enhance their performance beyond the current standards without increasing the price considerably. The Homogeneous Charge Compression Ignition (HCCI) engine technology is one of the combustion techniques which has the potential to partially meet the current critical challenges including CAFE standards and stringent EPA emissions standards. HCCI works on very lean mixtures compared to current SI engines, resulting in very low combustion temperatures and ultra-low NOx emissions. These engines when controlled accurately result in ultra-low soot formation. On the other hand HCCI engines face a problem of high unburnt hydrocarbon and carbon monoxide emissions. This technology also faces acute combustion controls problem, which if not dealt properly with yields highly unfavorable operating conditions and exhaust emissions. This thesis contains two main parts. One part deals in developing an HCCI experimental setup and the other focusses on developing a grey box modelling technique to control HCCI exhaust gas emissions. The experimental part gives the complete details on modification made on the stock engine to run in HCCI mode. This part also comprises details and specifications of all the sensors, actuators and other auxiliary parts attached to the conventional SI engine in order to run and monitor the engine in SI mode and future SI-HCCI mode switching studies. In the latter part around 600 data points from two different HCCI setups for two different engines are studied. A grey-box model for emission prediction is developed. The grey box model is trained with the use of 75% data and the remaining data is used for validation purpose. An average of 70% increase in accuracy for predicting engine performance is found while using the grey-box over an empirical (black box) model during this study. The grey-box model provides a solution for the difficulty faced for real time control of an HCCI engine. The grey-box model in this thesis is the first study in literature to develop a control oriented model for predicting HCCI engine emissions for control.
Resumo:
This dissertation presents a comparative study of three factories in Cork Harbour area, Sunbeam Wolsey (1927-90), Irish Steel (1939-2001) and the Ford Marina Plant (1917-84). All three factories were significant industrial employers in both a domestic (Irish) and a local (Cork) context and are broadly representative of the Irish manufacturing industry that was developed under the policies of tariff protection introduced in the 1930s and gradually phased out between the late 1950s and the mid-1980s. Sunbeam Wolsey was a textile and clothing concern located on the north side of Cork City that possessed a borderline monopoly within its economic sector and was among the largest private employers of female labour in twentieth century Ireland. Irish Steel was the country’s only steel mill, located on Haulbowline island, a brief ferry-ride from the seaside town of Cobh, and was unusual in being one of the few manufacturing concerns operated as a nationalised industry under the auspices of the state. The Ford Marina plant predated the introduction of protectionism by more than a decade and began as the centre of the Ford empire’s tractor manufacturing business, before switching to the production of private motor vehicles for the Irish market in 1932. All three industries were closed or sold off when the state withdrew support, either in the form of tariff protection (Ford, Sunbeam) or direct funding (Irish Steel). While devoting much attention to the three firms, the central concern of this dissertation is not the companies themselves (though the economic history portion of the dissertation is substantial), but the workers they employed, examining the lives of these individuals both as members of the Irish working class, and, more specifically, as employees of the three factories under consideration. The project can be best described as a comparative factory study, comparing and contrasting the three workforces, focusing primarily on industrial relation and the experience of work. This dissertation utilises both documentary evidence and a significant quantity of oral testimony, breaking new ground by making the workplace the central focus of its investigation. The principal aims of the study are: 1. To document the lives of those who worked in these factories, capturing through oral testimony their subjective experiences of social class and factory life, as well as differences among narrators in terms of gender and status. In achieving this aim, the study will provide a broader social context for its detailed analysis of work and industrial relations in each firm. 2. To analyse the three workplaces and determine how and why each developed such distinct systems of industrial relations at the factory level, as well as to compare and contrast these systems. 3. To examine the nature of work in each factory and to determine how work and industrial relations in each firm developed over time, relating these changes both to internal and external factors. Additionally, the project will provide a comparative analysis of these changes.
Resumo:
The Equipment and Vehicle Revolving Fund report covers all equipment and vehicle purchases through the highway materials and equipment revolving fund during FY 2016.
Resumo:
The Supplier-Relationship Management system is used by SC Department of Motor Vehicles personnel to requisition most purchases of services and materials for DMV purposes. General ledger account codes are first assigned by the shopping cart preparer. Administrative departments such as procurement, payables and budget regularly correct general ledger codes during the purchasing cycle to ensure proper reporting. DMV goals are consistent with accurate reporting of expenditures by general ledger account code. Incorrect reporting would be contrary to DMV' s vision of promoting effective and efficient business processes. Journal entries increased from 34 to 66 in FY2014 and FY20152 ; with a notable amount correcting the general ledger code. This project examines the assignment or correction of general ledger account codes for DMV's planned purchases for the purpose of process improvement.
Resumo:
The Titles and Registration Mail-In Unit of the Department of Motor Vehicles only processes title and registration work that has been mailed in. During the time periods of May through June and November through January, the mail workload backlog becomes overbearing. This research will attempt to find out the cause of this increase backlog during those periods, determine what procedures or steps are currently in place and unnecessarily creating needless work that has a direct correlation with the backlog and deploy a recommendation that will totally eliminate peak time backlog work loads.
Resumo:
The South Carolina Department of Motor Vehicles annually presents an accountability report to the governor and General Assembly with descriptions and budget of each program, objectives, and performance measures.
Resumo:
These bookmarks state: African-Americans smoke less, but have more smoking-related diseases than Caucasians. Smoking causes cancer, heart disease and a higher chance of stroke. The Good News If smoking is stopped, the health risks caused by smoking are reduced.
Resumo:
The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.
Resumo:
Signifying road-related events with warnings can be highly beneficial, especially when imminent attention is needed. This thesis describes how modality, urgency and situation can influence driver responses to multimodal displays used as warnings. These displays utilise all combinations of audio, visual and tactile modalities, reflecting different urgency levels. In this way, a new rich set of cues is designed, conveying information multimodally, to enhance reactions during driving, which is a highly visual task. The importance of the signified events to driving is reflected in the warnings, and safety-critical or non-critical situations are communicated through the cues. Novel warning designs are considered, using both abstract displays, with no semantic association to the signified event, and language-based ones, using speech. These two cue designs are compared, to discover their strengths and weaknesses as car alerts. The situations in which the new cues are delivered are varied, by simulating both critical and non-critical events and both manual and autonomous car scenarios. A novel set of guidelines for using multimodal driver displays is finally provided, considering the modalities utilised, the urgency signified, and the situation simulated.
Resumo:
Background: The transport of children in ground ambulances is a rarely studied topic worldwide. The ambulance vehicle is a unique and complex environment with particular challenges for the safe, correct and effective transportation of patients. Unlike the well developed and readily available guidelines on the safe transportation of a child in motor vehicles, there is a lack on consistent specifications for transporting children in ambulances. Nurses are called daily to transfer children to hospitals or other care centers, so safe transport practices should be a major concern. Purpose: to know which are the safety precautions and specific measures used in the transport of children in ground ambulances by nurses and firefighters and to identify what knowledge these professionals had about safe modes of children transportation in ground ambulances. Methods: In this context, an exploratory - descriptive study and quantitative analysis was conducted. A questionnaire was completed by 135 nurses and firefighters / ambulance crew based on 4 possible children transport scenarios proposed by the NHTSA (National Highway Traffic Safety Administration) and covered 5 different children´s age groups (new born children, 1 to 12 months; 1 to 3 years old; 4 to 7 years old and 8 to 12 years old). Results: The main results showed a variety of safety measures used by the professionals and a significant difference between their actual mode of transportation and the mode they consider to be the ideal considering security goals. In addition, findings showed that achieved scores related to what ambulance crews do in the considered scenarios reflect mostly satisfactory levels of transportation rather than optimum levels of safety, according to NHTSA recommendations. Variables as gender, educational qualifications, occupational group and local where professionals work seem to influence the transport options. Female professionals and nurses from pediatric units appear to do a safer transportation of children in ground ambulances than other professionals. Conclusion: Several professionals refereed unawareness of the safest transportation options for children in ambulances and did not to know the existence of specific recommendations for this type of transportation. The dispersion of the results suggests the need for investment in professional training and further regulation for this type of transportation.
Resumo:
Summary The transport of children in ground ambulances is a rarely studied topic worldwide. The ambulance vehicle is a unique environment with particular challenges for the safe, correct and effective transportation of patients. Unlike the well developed and available guidelines on the transportation of children in motor vehicles, there is a lack on specifications for transporting children in ambulances. Nurses are called daily to transfer children to hospitals or other care centres, so safe transport practices should be a major concern. Methods An exploratory - descriptive study and quantitative analysis was conducted. The safety measures used by the professionals in the transportation of children in ambulances were analysed based on the NHTSA (National Highway Traffic Safety Administration) recommendations. A questionnaire was applied to 135 nurses and firefighters/crew of Portuguese ambulances using 4 possible transport situations and covering 5 paediatric age groups. Results There are a variety of safety measures used by professionals and a significant difference between actual mode of transportation and the mode they consider to be the ideal. In addition, findings showed that scores related to what ambulance crews do in these scenarios reflect most satisfactory levels of transportation rather than the optimum levels, according to NHTSA recommendations. Variables as gender, educational qualifications, occupational group and local where professionals work seem to influence the transport options. Female professionals and pediatric nurses do a safer transportation of children in ambulances than other professionals. Conclusion The results suggest the need for investment in professional training and further regulation for this type of transportation.
Resumo:
Negli ultimi anni, i limiti sempre più stringenti sulle emissioni inquinanti dei gas di scarico, hanno portato ad un notevole aumento della complessità dei motori a combustione interna. Questa complicazione determina un aumento esponenziale del numero di test da effettuare nella sala prova. I metodi tipici di gestione dei test non possono più essere utilizzati, ma è essenziale creare un sistema che ottimizzi le prove. Per ridurre drasticamente il tempo di esecuzione, è necessario implementare un'architettura in grado di facilitare lo scambio di dati tra i sistemi presenti nella sala prova, e, in aggiunta, definire le strategie di automazione dei test. L'approccio a taluni metodi si presenta ancora complicato in molti gruppi di sviluppo di strategie di controllo motore, anche se, una volta sviluppati, portano e a grandi benefici durante la fase di test. Il lavoro illustra i metodi implementati per la gestione di queste strategie. Prima si descrive l'approccio utilizzato nella calibrazione di anticipo di accensione per mantenere livelli accettabili di detonazione durante il processo di calibrazione. Successivamente è mostrato il sistema di automazione dei test che consente il pieno controllo del punto di funzionamento del motore, la gestione dell'acquisizione e la verifica della stabilità delle condizioni ottenute. L'ultima parte mostra sistemi di prototipazione rapida per la gestione di componenti innovatici del motore.
Resumo:
The thesis work deals with topics that led to the development of innovative control-oriented models and control algorithms for modern gasoline engines. Knock in boosted spark ignition engines is the widest topic discussed in this document because it remains one of the most limiting factors for maximizing combustion efficiency in this kind of engine. First chapter is thus focused on knock and a wide literature review is proposed to summarize the preliminary knowledge that even represents the background and the reference for discussed activities. Most relevant results achieved during PhD course in the field of knock modelling and control are then presented, describing every control-oriented model that led to the development of an adaptive model-based combustion control system. The complete controller has been developed in the context of the collaboration with Ferrari GT and it allowed to completely redefine the knock intensity evaluation as well as the combustion phase control. The second chapter is focused on the activity related to a prototyping Port Water Injection system that has been developed and tested on a turbocharged spark ignition engine, within the collaboration with Magneti Marelli. Such system and the effects of injected water on the combustion process were then modeled in a 1-D simulation environment (GT Power). Third chapter shows the development and validation of a control-oriented model for the real-time calculation of exhaust gas temperature that represents another important limitation to the performance increase in modern boosted engines. Indeed, modelling of exhaust gas temperature and thermocouple behavior are themes that play a key role in the optimization of combustion and catalyst efficiency.