985 resultados para Montana. Industrial Accident Board
Resumo:
The study was undertaken to generate socio-economic information on fish market systems and performance of the industrial processing industry, which will guide the processes leading to modernization of the fisheries sector and, sustainability of Lake Victoria fisheries. The main objective of this study was to evaluate the socio-economic implications of the fish marketing systems with particular emphasis on fish export market in Uganda. The study thus, analysed the socio-economic characteristics of fishers and examinined fish marketing systems and the impacts on the fishing activities, food security, employment opportunities and incomes of fisher-folk communities.
Resumo:
Industrialists have few example processes they can benchmark against in order to choose a multi-agent development kit. In this paper we present a review of commercial and academic agent tools with the aim of selecting one for developing an intelligent, self-serving asset architecture. In doing so, we map and enhance relevant assessment criteria found in literature. After a preliminary review of 20 multiagent platforms, we examine in further detail those of JADE, JACK and Cougaar. Our findings indicate that Cougaar is well suited for our requirements, showing excellent support for criteria such as scalability, persistence, mobility and lightweightness. © 2010 IEEE.
Resumo:
This paper provides an overview of the rationale behind the significant interest in polymer-based on-board optical links together with a brief review of recently reported work addressing certain challenges in this field. Polymer-based optical links have garnered considerable research attention due to their important functional attributes and compelling cost-benefit advantages in on-board optoelectronic systems as they can be cost-effectively integrated on conventional printed circuit boards. To date, significant work on the polymer materials, their fabrication process and their integration on standard board substrates have enabled the demonstration of numerous high-speed on-board optical links. However, to be deployed in real-world systems, these optoelectronic printed circuit boards (OE PCBs) must also be cost-effective. Here, recent advances in the integration process focusing on simple direct end-fire coupling schemes and the use of low-cost FR4 PCB substrates are presented. Performance of two proof-of-principle 10 Gb/s systems based on this integration method are summarised while work in realising more complex yet compact planar optical components is outlined. © 2011 IEEE.
Resumo:
Growing environmental concerns caused by natural resource depletion and pollution need to be addressed. One approach to these problems is Sustainable Development, a key concept for our society to meet present as well as future needs worldwide. Manufacturing clearly has a major role to play in the move towards a more sustainable society. However it appears that basic principles of environmental sustainability are not systematically applied, with practice tending to focus on local improvements. The aim of the work presented in this paper is to adopt a more holistic view of the factory unit to enable opportunities for wider improvement. This research analyses environmental principles and industrial practice to develop a conceptual manufacturing ecosystem model as a foundation to improve environmental performance. The model developed focuses on material, energy and waste flows to better understand the interactions between manufacturing operations, supporting facilities and surrounding buildings. The research was conducted in three steps: (1) existing concepts and models for industrial sustainability were reviewed and environmental practices in manufacturing were collected and analysed; (2) gaps in knowledge and practice were identified; (3) the outcome is a manufacturing ecosystem model based on industrial ecology (IE). This conceptual model has novelty in detailing IE application at factory level and integrating all resource flows. The work is a base on which to build quantitative modelling tools to seek integrated solutions for lower resource input, higher resource productivity, fewer wastes and emissions, and lower operating cost within the boundary of a factory unit. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A scalable multi-channel optical regenerative bus architecture based on the use of polymer waveguides is presented for the first time. The architecture offers high-speed interconnection between electrical cards allowing regenerative bus extension with multiple segments and therefore connection of an arbitrary number of cards onto the bus. In a proof-ofprinciple demonstration, a 4-channel 3-card polymeric bus module is designed and fabricated on standard FR4 substrates. Low insertion losses (≤ -15 dB) and low crosstalk values (< -30 dB) are achieved for the fabricated samples while better than ± 6 μm -1 dB alignment tolerances are obtained. 10 Gb/s data communication with a bit-error-rate (BER) lower than 10-12 is demonstrated for the first time between card interfaces on two different bus modules using a prototype 3R regenerator. © 2012 Optical Society of America.
Resumo:
A scalable polymer waveguide-based regenerative optical bus architecture for use in board-level communications is presented. As a proof-of-principle demonstration, a 4-channel polymer bus formed on a FR4 substrate providing 10 Gb/s/channel data transmission is reported. © 2012 OSA.
Resumo:
Optical interconnects are increasingly considered for use in high-performance electronic systems. Multimode polymer waveguides are a promising technology for the formation of optical backplane as they enable cost-effective integration of optical links onto standard printed circuit boards. In this paper, two different types of polymer waveguide-based optical backplanes are presented. The first one implements a passive shuffle architecture enabling non-blocking on-board optical interconnection between different cards/modules, while the second one deploys a regenerative bus architecture allowing the interconnection of an arbitrary number of electrical cards over a common optical bus. The polymer materials and the multimode waveguide components used to form the optical backplanes are presented, while details of the interconnection architectures and design of the backplanes are described. Proof-of-principle demonstrators fabricated onto low-cost FR4 substrates, including a 10-card 1 Tb/s-capacity passive shuffle router and 4-channel 3-card polymeric bus modules, are reported and their optical performance characteristics are presented. Low-loss, low-crosstalk on-board interconnection is achieved and error-free (BER10 12) 10 Gb/s communication between different card/module interfaces is demonstrated in both polymeric backplane systems. © 2012 IEEE.
Resumo:
A 4-channel polymeric optical bus module suitable for use in board-level interconnections is presented. Low-loss and low-crosstalk module performance is achieved, while -1 dB alignment tolerances better than ± 8 μm are demonstrated. © 2012 OSA.
Resumo:
The design and characterization of polymer-based multimode 90°-crossings, combiners and splitters exhibiting excess losses below 0.1 dB/crossing, 2 dB and 3 dB respectively are reported. The devices enable the realization of an on-board optical bus. © 2012 OSA.