948 resultados para Monitoring tool
Resumo:
The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemical composition of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition (particles above 50 nm in vacuum aerodynamic diameter) and PNSD (particles within 9-414 nm in mobility diameter), respectively. Five NPF events, with growth rates in the range 3.3-4.6 nm, were detected at two of the sites. The NPF events happened on relatively warmer days with lower condensation sink (CS). Temporal percent fractions of organics increased after the particles grew enough to have a significant contribution to particles volume, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs f43 trends were compared between nucleation and non-nucleation days. K-means cluster analysis was performed on f44 vs f43 data and it was found that they follow different patterns on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs f43 plot and this finding can be potentially used as a tool for source apportionment of measured particles.
Resumo:
When exposed to hot (22-35 degrees C) and dry climatic conditions in the field during the final 4-6 weeks of pod filling, peanuts (Arachis hypogaea L.) can accumulate highly carcinogenic and immuno-suppressing aflatoxins. Forecasting of the risk posed by these conditions can assist in minimizing pre-harvest contamination. A model was therefore developed as part of the Agricultural Production Systems Simulator (APSIM) peanut module, which calculated an aflatoxin risk index (ARI) using four temperature response functions when fractional available soil water was <0.20 and the crop was in the last 0.40 of the pod-filling phase. ARI explained 0.95 (P <= 0.05) of the variation in aflatoxin contamination, which varied from 0 to c. 800 mu g/kg in 17 large-scale sowings in tropical and four sowings in sub-tropical environments carried out in Australia between 13 November and 16 December 2007. ARI also explained 0.96 (P <= 0.01) of the variation in the proportion of aflatoxin-contaminated loads (>15 mu g/kg) of peanuts in the Kingaroy region of Australia during the period between the 1998/99 and 2007/08 seasons. Simulation of ARI using historical climatic data from 1890 to 2007 indicated a three-fold increase in its value since 1980 compared to the entire previous period. The increase was associated with increases in ambient temperature and decreases in rainfall. To facilitate routine monitoring of aflatoxin risk by growers in near real time, a web interface of the model was also developed. The ARI predicted using this interface for eight growers correlated significantly with the level of contamination in crops (r=095, P <= 0.01). These results suggest that ARI simulated by the model is a reliable indicator of aflatoxin contamination that can be used in aflatoxin research as well as a decision-support tool to monitor pre-harvest aflatoxin risk in peanuts.
Resumo:
In this study, nasal swabs taken from multiparous sows at weaning time or from sick pigs displaying symptoms of Glasser's disease from farms in Australia [date not given] were cultured and analysed by polymerase chain reaction (PCR). Within each genotype detected on a farm, representative isolates were serotyped by gel diffusion (GD) testing or indirect haemagglutination (IHA) test. Isolates which did not react in any of the tests were regarded as non-typable and were termed serovar NT. Serovars 1, 5, 12, 13 and 14 were classified as highly pathogenic; serovars 2, 4 and 15 being moderately pathogenic; serovar 8 being slightly pathogenic and serovars 3, 6, 7, 9 and 11 being non-pathogenic. Sows were inoculated with the strain of Haemophilus parasuis (serovars 4, 6 and 9 from Farms 1, 2 and 4, respectively) used for controlled challenge 3 and 5 weeks before farrowing. Before farrowing the sows were divided into control and treatment groups. Five to seven days after birth, the piglets of the treatment group were challenged with a strain from the farm which had were used to vaccinate the sows. The effectiveness of the controlled exposure was evaluated by number of piglets displaying clinical signs possibly related to infection, number of antibiotic treatments and pig mortality. Nasal swabs of sick pigs were taken twice a week to find a correlation to infection. A subsample of pigs was weighed after leaving the weaning sheds. The specificity of a realtime PCR amplifying the infB gene was evaluated with 68 H. parasuis isolates and 36 strains of closely related species. 239 samples of DNA from tissues and fluids of 16 experimentally challenged animals were also tested with the realtime PCR, and the results compared with culture and a conventional PCR. The farm experiments showed that none of the controlled challenge pigs showed any signs of illness due to Glasser's disease, although the treatment groups required more antibiotics than the controls. A total of 556 H. parasuis isolates were genotyped, while 150 isolates were serotyped. H. parasuis was detected on 19 of 20 farms, including 2 farms with an extensive history of freedom from Glasser's disease. Isolates belonging to serovars regarded as potentially pathogenic were obtained from healthy pigs at weaning on 8 of the 10 farms with a history of Glasser's disease outbreaks. Sampling 213 sick pigs yielded 115 isolates, 99 of which belonged to serovars that were either potentially pathogenic or of unknown pathogenicity. Only 16 isolates from these sick pigs were of a serovar known to be non-pathogenic. Healthy pigs also had H. parasuis, even on farms free of Glasser's disease. The realtime PCR gave positive results for all 68 H. parasuis isolates and negative results for all 36 non-target bacteria. When used on the clinical material from experimental infections, the realtime PCR produced significantly more positive results than the conventional PCR (165 compared to 86).
Resumo:
Large geographic areas can have numerous incipient invasive plant populations that necessitate eradication. However, resources are often deficient to address every infestation. Within the United States, weed lists (either state-level or smaller unit) generally guide the prioritization of eradication of each listed species uniformly across the focus region. This strategy has several limitations that can compromise overall effectiveness, which include spending limited resources on 1) low impact populations, 2) difficult to access populations, or 3) missing high impact populations of low priority species. Therefore, we developed a novel science-based, transparent, analytical ranking tool to prioritize weed populations, instead of species, for eradication and tested it on a group of noxious weeds in California. For outreach purposes, we named the tool WHIPPET (Weed Heuristics: Invasive Population Prioritization for Eradication Tool). Using the Analytic Hierarchy Process that included expert opinion, we developed three major criteria, four sub-criteria, and four sub-sub-criteria, taking into account both species and population characteristics. Subject matter experts weighted and scored these criteria to assess the relative impact, potential spread, and feasibility of eradication (major criteria) for 100 total populations of 19 species. Species-wide population scores indicated that conspecific populations do not necessarily group together in the final ranked output. Thus, priority lists based solely on species-level characteristics are less effective compared to a blended prioritization based on both species attributes and individual population and site parameters. WHIPPET should facilitate a more efficacious decision-making process allocating limited resources to target invasive plant infestations with the greatest predicted impacts to the region under consideration.
Resumo:
Matrix metalloproteinase (MMP) -8, collagenase-2, is a key mediator of irreversible tissue destruction in chronic periodontitis and detectable in gingival crevicular fluid (GCF). MMP-8 mostly originates from neutrophil leukocytes, the first line of defence cells which exist abundantly in GCF, especially in inflammation. MMP-8 is capable of degrading almost all extra-cellular matrix and basement membrane components and is especially efficient against type I collagen. Thus the expression of MMP-8 in GCF could be valuable in monitoring the activity of periodontitis and possibly offers a diagnostic means to predict progression of periodontitis. In this study the value of MMP-8 detection from GCF in monitoring of periodontal health and disease was evaluated with special reference to its ability to differentiate periodontal health and different disease states of the periodontium and to recognise the progression of periodontitis, i.e. active sites. For chair-side detection of MMP-8 from the GCF or peri-implant sulcus fluid (PISF) samples, a dip-stick test based on immunochromatography involving two monoclonal antibodies was developed. The immunoassay for the detection of MMP-8 from GCF was found to be more suitable for monitoring of periodontitis than detection of GCF elastase concentration or activity. Periodontally healthy subjects and individuals suffering of gingivitis or of periodontitis could be differentiated by means of GCF MMP-8 levels and dipstick testing when the positive threshold value of the MMP-8 chair-side test was set at 1000 µg/l. MMP-8 dipstick test results from periodontally healthy and from subjects with gingivitis were mainly negative while periodontitis patients sites with deep pockets ( 5 mm) and which were bleeding on probing were most often test positive. Periodontitis patients GCF MMP-8 levels decreased with hygiene phase periodontal treatment (scaling and root planing, SRP) and even reduced during the three month maintenance phase. A decrease in GCF MMP-8 levels could be monitored with the MMP-8 test. Agreement between the test stick and the quantitative assay was very good (κ = 0.81) and the test provided a baseline sensitivity of 0.83 and specificity of 0.96. During the 12-month longitudinal maintenance phase, periodontitis patients progressing sites (sites with an increase in attachment loss ≥ 2 mm during the maintenance phase) had elevated GCF MMP-8 levels compared with stable sites. General mean MMP-8 concentrations in smokers (S) sites were lower than in non-smokers (NS) sites but in progressing S and NS sites concentrations were at an equal level. Sites with exceptionally and repeatedly elevated MMP-8 concentrations during the maintenance phase were clustered in smoking patients with poor response to SRP (refractory patients). These sites especially were identified by the MMP-8 test. Subgingival plaque samples from periodontitis patients deep periodontal pockets were examined by polymerase chain reaction (PCR) to find out if periodontal lesions may serve as a niche for Chlamydia pneumoniae. Findings were compared with the clinical periodontal parameters and GCF MMP-8 levels to determine the correlation with periodontal status. Traces of C. pneumoniae were identified from one periodontitis patient s pooled subgingival plaque sample by means of PCR. After periodontal treatment (SRP) the sample was negative for C. pneumoniae. Clinical parameters or biomarkers (MMP-8) of the patient with the positive C. pneumoniae finding did not differ from other study patients. In this study it was concluded that MMP-8 concentrations in GCF of sites from periodontally healthy individuals, subjects with gingivitis or with periodontitis are at different levels. The cut-off value of the developed MMP-8 test is at an optimal level to differentiate between these conditions and can possibly be utilised in identification of individuals at the risk of the transition of gingivitis to periodontitis. In periodontitis patients, repeatedly elevated GCF MMP-8 concentrations may indicate sites at risk of progression of periodontitis as well as patients with poor response to conventional periodontal treatment (SRP). This can be monitored by MMP-8 testing. Despite the lower mean GCF MMP-8 concentrations in smokers, a fraction of smokers sites expressed very high MMP-8 concentrations together with enhanced periodontal activity and could be identified with MMP-8 specific chair-side test. Deep periodontal lesions may be niches for non-periodontopathogenic micro-organisms with systemic effects like C. pneumoniae and possibly play a role in the transmission from one subject to another.
Resumo:
The project has provided management and other stakeholders with information necessary to make informed decisions about the management of four of the key exploited shark species caught in the Queensland inshore net fishery and northern New South Wales line fishery. The project has determined that spatial management of milk sharks within Queensland, and scalloped hammerhead, common black tip and Australian black tip sharks within Queensland and New South Wales is appropriate. The project has determined that both black tip shark species are likely to require co-operative management arrangements between Queensland and New South Wales. For scalloped hammerheads separate stocks between the two jurisdictions were identified from the fisheriesdependent samples, however genetic exchange across borders is likely to be facilitated by movement of adult females and perhaps larger males to a lesser extent. This information will greatly assist compliance with the Commonwealth Environment Protection and Biodiversity Conservation Act (1999) for shark fisheries in north-eastern Australia by providing the necessary basis for robust assessment of the status of stocks of the study species, thereby helping to deliver their sustainable harvest. It also helps to achieve objectives of the Australian National Shark Plan. The project provides the appropriate spatial framework for future monitoring and assessment of the study species. This is at a time when shark fisheries are receiving close attention from all sectors and when monitoring programs are being implemented, aimed at better assessment of stock status. This project has provided the crucial information for developing an appropriate monitoring design as well as the necessary basis for making statements about stock status. The project has addressed research priorities identified by the Queensland Fisheries Research Advisory Board, Great Barrier Reef Marine Park Authority and Queensland Fisheries. Previously management has assumed a single stock for each species on the east coast of Queensland, and management of shark fisheries in New South Wales (NSW) and Queensland has been independent of one another. The project has been able to enhance and develop links between research, management and industry. Strong positive relationships with commercial fishers were crucial in the collection of samples throughout the study area and fisheries managers were part of the project team throughout the study period. During the project the study area was extended to include both Queensland and NSW waters, creating mutualistic and positive links between the States’ research and management agencies. Extension of project results included management representatives from NSW and Queensland, as well as the Northern Territory where similar shark fisheries operate and similar species are targeted. The project was able to provide significant human capital development opportunities providing considerable value to the project outcomes. Use of vertebral microchemistry and life history characteristics as stock determination methods provided material for two PhD students based at James Cook University: Ron Schroeder, vertebral chemistry; and Alastair Harry, life history characteristic. The project has developed novel research methods that have great capacity for future application, including: • Development of a simple and rapid genetic diagnostic tool (RT-HRM-PCR assay) for differentiating among the black tip shark species, for which no simple morphological identifier exists; and • Development of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) methods for analysing and interpreting microchemical composition of shark vertebrae. The study has provided further confirmation of the effectiveness of using a holistic approach in stock structure studies and justifies investment into such studies.
Resumo:
OBJECTIVES: 1. Analyse current monitoring and logbook data sets, as well as survey and other information,to establish whether these data provide sufficient power to develop critical indicators of fishery performance. 2. Provide a risk analysis that examines the use of age structure and catch rate information for development of critical indicators, and response rules for those criteria, in the absence of other fishery information. 3. Develop a monitoring program that uses commercial vessels from the fishery to provide independent data.
Resumo:
Control of bacterial disease of pigs.
Resumo:
Development of a Gulf community based natural resource monitoring program, with sawfish as an initial focus.
Resumo:
Ground Cover Monitoring in the Fitzroy Basin.
Resumo:
Management of insecticide resistance.
Resumo:
Quality management strawberry, DNA genotyping.
Resumo:
The aim of this project is to further develop, improve and validate the Weed Seed Wizard, the weed seedbank management tool that was developed in the Weed CRC and to encourage its adoption by researchers, growers and consultants. The focus of the first phase of the project (Phase One) will be on calibrating and validating the model against experimental biological data and trial and paddock monitoring results, collected from published scientific literature, previous studies and ongoing trials and experiments.
Resumo:
The project will produce practical and relevant benchmarks, protocols and recommendations for the adoption of remote sensing technologies for improved in season management and therefore production within the Australian sugar cane industry.