999 resultados para Mol, Annemarie
Resumo:
A caramboleira (Averrhoa carambola) tende a acumular grande quantidade de Mn nos seus tecidos, mas são escassas as informações sobre a forma como o excesso desse nutriente permanece na planta. Com o objetivo de contribuir para o esclarecimento desse aspecto, neste trabalho foram cultivadas mudas de caramboleira em solução nutritiva de Furlani (1999) com concentrações crescentes de Mn (0; 0,5; 25; e 50 mg L-1 de Mn), e aos 30, 60, 90 e 120 dias os tecidos de caule, folha e raiz foram colhidos e submetidos a uma sequência de soluções extratoras: água, DTPA (ácido dietilenotriaminopentacético) e HCl (ácido clorídrico) 1 mol L-1, com posterior determinação da quantidade de Mn nos extratos e nos tecidos remanescentes. Foram encontrados teores crescentes de Mn nos extratos de água, DTPA e HCl 1 mol L-1. A maior parte (cerca de 50 %) do Mn permaneceu no tecido vegetal, mesmo após subsequentes extrações com as diferentes soluções extratoras, indicando que essa parte está fortemente ligada aos tecidos. Os maiores teores de Mn foram encontrados nas raízes e, os menores, no caule e nas folhas, sugerindo que a caramboleira tende a fixar o Mn nas raízes, possivelmente como mecanismo para limitar o transporte para a parte área, evitando a intoxicação da planta.
Resumo:
Denman 002 is a new Australian carbonaceous chondrite. A single stone of 30 g was recovered in 1991 May near Fisher Station on the Trans Australian Railway, Nullarbor Plain, South Australia (30-degrees-36'S, 130-degrees-04'E). Texture, mineral and chemical composition indicate that it is a CV3 chondrite of oxidised subgroup with several similarities to Allende. It is composed of sharply defined chondrules, Ca-Al rich inclusions up to 3.5 mm across, olivine aggregates and fine-grained, nearly opaque matrix (40 vol%). Silicates are compositionally highly heterogeneous (olivine Fa: 0.2-45.6 mol%, PMD: 109.7). Denman 002 shows shock effects of stage S1 and weathering of category A
Resumo:
O estudo da distribuição de Se em solos é de extremo interesse devido à estreita faixa entre níveis de deficiência e toxidez. A espécie química de Se com maior potencial toxicológico é o ânion selenato, em razão de sua alta mobilidade em solos, sendo assim de grande importância a compreensão de seu comportamento em solos tropicais. Foi realizado um experimento de adsorção, utilizando-se 2 g de solo em 20 mL de solução, contendo dez diferentes concentrações de Se na forma de Na2SeO4, com tempo de agitação de 24 h, em solução eletrolítica de NaNO3 0,03 mol L-1. Para estudar o efeito do tempo na adsorção, realizou-se um experimento nas mesmas condições das do ensaio de adsorção, porém foi utilizada somente a concentração de 1 mg L-1 Se, variando o tempo de agitação de 15 min a 72 h. A isoterma de adsorção de Freundlich foi a de melhor ajuste aos dados experimentais. Para o estudo cinético, o melhor modelo foi o de pseudossegunda ordem, e o tempo necessário para a adsorção do Se atingir o equilíbrio foi de aproximadamente 4 h. De modo geral, os valores obtidos para Kd foram baixos; assim, conclui-se que o Se tende a ficar mais em solução do que retido nas partículas do solo. Portanto, os solos mais intemperizados, gibbsíticos e goethíticos e com maior conteúdo de argila foram os que tiveram maior afinidade pelo selênio. Nos solos com textura média ou arenosa, esse elemento tende a ser menos retido, razão pela qual pode ser absorvido pelas plantas ou ser facilmente lixiviado, podendo causar malefícios ao ecossistema.
Resumo:
In Brazil, plant-available micronutrients in the soil can be determined by several chemical extractants, the most common of which are dilute acid and chelating solutions. The purpose of this study was to assess the extractants 0.1 mol L-1 HCl, Mehlich-1, Mehlich-3 and DTPA for analysis of the micronutrients Cu, Zn, Fe, and Mn in soils from the state of Paraná. In samples from 12 soils (0-20 cm layer), wheat was planted (Triticum aestivum), grown for 42 days after emergence, and then bean (Phaseolus vulgaris) for 38 days. At the end of each planting period, the soil was sampled again. All extractants tested to assess the availability of Cu, Zn, Fe, and Mn correlated with each other. The efficiency of the extractants HCl, Mehlich-3 and DTPA in assessing plant-available Cu was similar, unlike Mehlich-1, which proved less efficient. The extractants HCl, Mehlich-1 and Mehlich-3 were less efficient in estimating plant-available Zn and Fe, and the most indicated extractant is DTPA. The efficiency of the extractants HCl, Mehlich-1, Mehlich-3 and DTPA in assessing plant-available Mn in soils from Paraná was similar.
Resumo:
We show that the magnetoelastic coupling between the magnetization and the amplitude of a short wavelength phonon enables the existence of a first order premartensitic transition from a bcc to a micromodulated phase in Ni2MnGa. Such a magnetoelastic coupling has been experimentally evidenced by ac susceptibility and ultrasonic measurements under an applied magnetic field. A latent heat around 9 J/mol has been measured using a highly sensitive calorimeter. This value is in very good agreement with the value predicted by a proposed model.
Resumo:
Castor bean is a nutrient-demanding species, but there is still little information on its micronutrient requirements. The objectives of this study were to evaluate the effects of levels of B (2.5, 12.5 and 25.0 µmol L-1), Cu (0.05, 0.25 and 0.50 µmol L-1), Mn (0.2, 1.0 and 2.0 µmol L-1) and Zn (0.2, 1.0 and 2.0 µmol L-1) in a nutrient solution on plant B, Cu, Mn and Zn concentrations and uptake, vegetative growth and fruit yield of castor bean "Iris", grown in greenhouse. The experiment was arranged in a completely randomized block design with three replicates. The first deficiency symptoms were observed for B, followed by Zn, Cu and Mn. The main changes in the cell ultrastructure due to lack of B were thickening of the cell walls and middle lamellae, distorted chloroplasts and tightly stacked thylakoids, besides the absence of starch grains. The Mn, Zn and Cu deficiencies led to disruption of chloroplasts, disintegration of thylakoids and absence of amyloplasts. The concentration and uptake of B, Cu, Mn, and Zn in castor bean plants increased with micronutrient supply in the solution. Fruit yield was drastically reduced by B and Mn deficiencies. On the other hand, the dry matter yield of the shoot and root of castor bean plants was not. In the treatment with full nutrient solution, the leaves accumulated 56 and 48 % of the total B and Mn taken up by the plants, respectively, and the seeds and roots 85 and 61 % of the total Cu and Zn taken up, respectively. This shows the high demand of castor bean Iris for B and Mn for fruit yield.
Resumo:
A large variety of techniques have been used to measure soil CO2 released from the soil surface, and much of the variability observed between locations must be attributed to the different methods used by the investigators. Therefore, a minimum protocol of measurement procedures should be established. The objectives of this study were (a) to compare different absorption areas, concentrations and volumes of the alkali trapping solution used in closed static chambers (CSC), and (b) to compare both, the optimized alkali trapping solution and the soda-lime trapping using CSC to measure soil respiration in sugarcane areas. Three CO2 absorption areas were evaluated (7; 15 and 20 % of the soil emission area or chamber); two volumes of NaOH (40 and 80 mL) at three concentrations (0.1, 0.25 and 0.5 mol L-1). Three different types of alkaline traps were tested: (a), 80 mL of 0.5 mol L-1 NaOH in glass containers, absorption area 15 % (V0.5); (b) 40 mL of 2 mol L-1 NaOH retained in a sponge, absorption area 80 % (S2) and (c) 40 g soda lime, absorption area 15 % (SL). NaOH concentrations of 0.5 mol L-1 or lower underestimated the soil CO2-C flux or CO2 flux. The lower limit of the alkali trap absorption area should be a minimum of 20 % of the area covered by the chamber. The 2 mol L-1 NaOH solution trap (S2) was the most efficient (highest accuracy and highest CO2 fluxes) in measuring soil respiration.
Resumo:
The epithelial Na+ channel ENaC mediates transepithelial Na+ transport in the distal kidney, the colon, and the lung and is a key element for the maintenance of Na+ balance and the regulation of blood pressure. Mutagenesis studies have identified residues alphaS583 and the homologous betaG525 and gammaG537 in the outer pore entrance that are critical for ENaC block by the K+-sparing diuretic amiloride. The aim of the present study was to determine first, whether these residues are part of the amiloride binding site, and second, whether they are general determinants of ENaC block by amiloride and its derivatives. Kinetic analysis of the association and dissociation rates of amiloride and benzamil to ENaC showed that mutation of residue alphaS583C and the homologous betaG525C increased the dissociation rate of the drugs from the binding site, with little changes in their association rate. Thus, these mutations destabilize the binding interaction between the blockers and the receptor on the channel, favoring the unbinding of the ligand. This strongly suggests that they are part of the binding site. Because mutations of alphaS583, betaG525, and gammaG537 have similar effects on amiloride, benzamil, and triamterene block, we conclude that these three ENaC blockers share a common receptor within the ion channel pore.
Resumo:
O sistema plantio direto (SPD), em função de seu tempo de estabelecimento, pode promover aumento na quantidade de resíduos vegetais adicionados à superfície do solo e, consequentemente, modificações nos seus atributos químicos e físicos. O trabalho teve por objetivo quantificar a deposição de resíduos vegetais na superfície do solo (RVS) e as modificações nos teores de matéria orgânica leve (MOL), nos estoques de carbono e nitrogênio, nos teores de fósforo remanescente (Prem) e nos atributos físicos do solo - densidade de partículas (Dp), densidade do solo (Ds) e volume total de poros (VTP) -, bem como avaliar a origem do carbono por meio de técnicas isotópicas (13C). Para isso, em Montividiu (GO) foram selecionadas áreas sob SPD com diferentes tempos de implantação: SPD com três anos de implantação (SPD3), SPD com 15 anos de implantação (SPD15) e SPD com 20 anos de implantação (SPD20), as quais foram comparadas a uma área de Cerrado nativo stricto sensu (CE) e a uma área de pastagem plantada de Brachiaria decumbens (PA). Em cada uma das áreas, foram coletadas amostras nas profundidades de 0-5, 5-10 e 10-20 cm. O solo das áreas de estudo foi classificado como Latossolo Vermelho distroférrico. O delineamento utilizado foi inteiramente casualizado. Foi observado aumento nos teores de RVS, MOL, VTP, Prem, C e N em função do tempo de implantação do SPD. A área de SPD com 20 anos apresentou maiores valores de C e N e valores semelhantes de Ds e MOL, em relação ao CE. As análises de 13C demonstraram que as leguminosas estão contribuindo de forma significativa para a composição da matéria orgância nas áreas sob SPD. Nas áreas sob SPD, verificou-se aumento dos valores de estoque de C e de N em função do tempo de implantação em todas as profundidades analisadas; as áreas SPD15 e SPD20 apresentaram nas camadas superficiais valores semelhantes e, ou, superiores aos da área de CE. A área de PA apresentou os piores valores dos atributos analisados, demonstrando estar em estádio mais avançado de degradação.
Resumo:
The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O), supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste). The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol), which was incubated for 100 days, at 70 % (w/w) moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB) were the silicate rocks that most influenced soil pH, while the mining byproduct (MB) led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.
Resumo:
Introduction: Evidence-based medicine (EBM) improves the quality of health care. Courses on how to teach EBM in practice are available, but knowledge does not automatically imply its application in teaching. We aimed to identify and compare barriers and facilitators for teaching EBM in clinical practice in various European countries. Methods: A questionnaire was constructed listing potential barriers and facilitators for EBM teaching in clinical practice. Answers were reported on a 7-point Likert scale ranging from not at all being a barrier to being an insurmountable barrier. Results: The questionnaire was completed by 120 clinical EBM teachers from 11 countries. Lack of time was the strongest barrier for teaching EBM in practice (median 5). Moderate barriers were the lack of requirements for EBM skills and a pyramid hierarchy in health care management structure (median 4). In Germany, Hungary and Poland, reading and understanding articles in English was a higher barrier than in the other countries. Conclusion: Incorporation of teaching EBM in practice faces several barriers to implementation. Teaching EBM in clinical settings is most successful where EBM principles are culturally embedded and form part and parcel of everyday clinical decisions and medical practice.
Resumo:
Urea is the most consumed nitrogen fertilizer in the world. However, its agronomic and economic efficiency is reduced by the volatilization of NH3, which can reach 78 % of the applied nitrogen. The coating of urea granules with acidic compounds obtained by charcoal oxidation has the potential to reduce the volatilization, due to the acidic character, the high buffering capacity and CEC. This work aimed to evaluate the effect of HNO3-oxidized carbon on the control of NH3 volatilization. These compounds were obtained by oxidation of Eucalyptus grandis charcoal, produced at charring temperatures of 350 and 450 ºC, with 4.5 mol L-1 HNO3. The charcoal was oxidized by solubilization in acidic or alkaline medium, similar to the procedure of soil organic matter fractionation (CHox350 and CHox450). CHox was characterized by C, H, O, N contents and their respective atomic relations, by the ratio E4 (absorbance 465 nm) by E6 (absorbance 665 nm), and by active acidity and total acidity (CEC). The inhibitory effect of CHox on the urease activity of Canavalia ensiformis was assessed in vitro. The NH3 volatilization from urea was evaluated with and without coating of oxidized charcoal (U-CHox350 or U-CHox450) in a closed system with continuous air flow. The pH of both CHox was near 2.0, but the total acidity of CHox350 was higher, 72 % of which was attributed to carboxylic groups. The variation in the ionization constants of CHox350 was also greater. The low E4/E6 ratios characterize the high stability of the compounds in CHox. CHox did not inhibit the urease activity in vitro, although the maximum volatilization peak from U-CHox450 and U-CHox350 occurred 24 h after that observed for uncoated urea. The lowest volatilization rate was observed for U-CHox350 as well as a 43 % lower total amount of NH3 volatilized than from uncoated urea.
Resumo:
Successive applications of pig litter to the soil surface can increase the phosphorus (P) content and alter its adsorption, promoting P transfer to surface or subsurface waters. The purpose of this study was to evaluate P accumulation and the pollution potential of a soil after application of pig litter. In March 2010, eight years after the installation of an experiment in Braço do Norte, Santa Catarina, SC, Brazil, on a Typic Hapludult, soil was sampled (layers 0-2.5, 2.5-5, 5-10, 10-15, 15-20 and 20-30 cm) after the following fertilization treatments: no pig litter fertilization, pig slurry application and pig manure application. In this period, 694 and 1,890 kg P2O5 ha-1 were applied in the treatments with pig slurry and pig manure, respectively. The P content was determined, based on Mehlich-1, anion exchange resin (AER), 0.01 mol L-1 CaCl2 and total P in the samples. The adsorption isotherm parameters were also determined by the Langmuir and Koski-Vähälä & Hartikainem models in the layers 0-2.5 and 20-30 cm. The application of 1,890 kg P2O5 ha-1 in the form of pig manure led to P accumulation, as evidenced by Mehlich-1, down to a depth of 15 cm, by AER and 0.01 mol L-1 CaCl2 down to 20 cm and by total P to 30 cm. After application of 1,890 kg P2O5 ha-1 in the form of pig manure, the values of maximum P adsorption capacity were lowest in the deepest layer (20-30 cm), indicating the occupation of part of the adsorption sites of the particles. The application of swine manure to the soil over eight years increased the P quantity in the soil solution of the surface layer, indicating environmental contamination risk for surface and subsurface waters.
Resumo:
Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.