942 resultados para Model-driven Web engineering
Resumo:
Multiple sampling is widely used in vadose zone percolation experiments to investigate the extent in which soil structure heterogeneities influence the spatial and temporal distributions of water and solutes. In this note, a simple, robust, mathematical model, based on the beta-statistical distribution, is proposed as a method of quantifying the magnitude of heterogeneity in such experiments. The model relies on fitting two parameters, alpha and zeta to the cumulative elution curves generated in multiple-sample percolation experiments. The model does not require knowledge of the soil structure. A homogeneous or uniform distribution of a solute and/or soil-water is indicated by alpha = zeta = 1, Using these parameters, a heterogeneity index (HI) is defined as root 3 times the ratio of the standard deviation and mean. Uniform or homogeneous flow of water or solutes is indicated by HI = 1 and heterogeneity is indicated by HI > 1. A large value for this index may indicate preferential flow. The heterogeneity index relies only on knowledge of the elution curves generated from multiple sample percolation experiments and is, therefore, easily calculated. The index may also be used to describe and compare the differences in solute and soil-water percolation from different experiments. The use of this index is discussed for several different leaching experiments. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A new isotherm is proposed here for adsorption of condensable vapors and gases on nonporous materials having type II isotherms according to the Brunauer-Deming-Deming-Teller (BDDH) classification. The isotherm combines the recent molecular-continuum model in the multilayer region, with other widely used models for sub-monolayer coverage, some of which satisfy the requirement of a Henry's law asymptote. The model is successfully tested using isotherm data for nitrogen adsorption on nonporous silica, carbon and alumina, as well as benzene and hexane adsorption on nonporous carbon. Based on the data fits, out of several different alternative choices of model for the monolayer region, the Freundlich and the Unilan models are found to be the most successful when combined with the multilayer model to predict the whole isotherm. The hybrid model is consequently applicable over a wide pressure range. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.
Resumo:
Rheological properties of nine unprocessed unifloral Australian honeys (bloodwood, blue top iron bark, gum top, heath, narrow leafed iron bark, stringy bark, tea tree yapunyah and yellow box) were analysed over a range of temperatures (1-40 degreesC) The temperature effect on the viscosity follow ed an Arrhenius-type relationship and ail honey varieties exhibited Newtonian behaviour. if the Arrhenius equation constants (mu (0) and E-a) for a particular honey are known, the Arrhenius model can be used to calculate the viscosity of these honeys at specific temperatures, negating the need for tedious viscosity determination. (C) 2000 Academic Press.
Resumo:
A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.
Resumo:
Certification of an ISO 14001 Environmental Management System (EMS) is currently an important requirement for those enterprises wishing to sell their products in the context of a global market. The system`s structure is based on environmental impact evaluation (EIE). However, if an erroneous or inadequate methodology is applied, the entire process may be jeopardized. Many methodologies have been developed for making of EIEs, some of them are fairly complex and unsuitable for EMS implementation in an organizational context, principally when small and medium size enterprises (SMEs) are involved. The proposed methodology for EIE is part of a model for implementing EMS. The methodological approach used was a qualitative exploratory research method based upon sources of evidence such as document analyses, semi-structured interviews and participant observations. By adopting a cooperative implementation model based on the theory of system engineering, difficulties relating to implementation of the sub-system were overcome thus encouraging SMEs to implement EMS. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from Aequorea victoria by a random mutagenesis strategy using error-prone polymerase chain reaction. Screening of bacterial colonies transformed with random mutant libraries identified GFP variants with increased fluorescence yields. Mapping the three-dimensional structure of these mutants demonstrated how alterations in structural features such as the environment around the fluorophore and properties of the protein surface can influence functional properties such as the intensity of fluorescence and protein solubility.
Resumo:
We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.
Resumo:
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
In this second paper, the three structural measures which have been developed are used in the modelling of a three stage centrifugal synthesis gas compressor. The goal of this case study is to determine the essential mathematical structure which must be incorporated into the compressor model to accurately model the shutdown of this system. A simple, accurate and functional model of the system is created via three structural measures. It was found that the model can be correctly reduced into its basic modes and that the order of the differential system can be reduced from 51(st) to 20(th). Of the 31 differential equational 21 reduce to algebraic relations, 8 become constants and 2 can be deleted thereby increasing the algebraic set from 70 to 91 equations. An interpretation is also obtained as to which physical phenomena are dominating the dynamics of the compressor add whether the compressor will enter surge during the shutdown. Comparisons of the reduced model performance against the full model are given, showing the accuracy and applicability of the approach. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Purlin-sheeting systems used for roofs and walls commonly take the form of cold-formed channel or zed section purlins, screw-connected to corrugated sheeting. These purlin-sheeting systems have been the subject of numerous theoretical and experimental investigations over the past three decades, but the complexity of the systems has led to great difficulty in developing a sound and general model. This paper presents a non-linear elasto-plastic finite element model, capable of predicting the behaviour of purlin-sheeting systems without the need for either experimental input or over simplifying assumptions. The model incorporates both the sheeting and the purlin, and is able to account for cross-sectional distortion of the purlin, the flexural and membrane restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The validity of the model is shown by its good correlation with experimental results. A simplified version of this model, which is more suitable for use in a design environment, is presented in a companion paper. (C) 1997 Elsevier Science Ltd.
Resumo:
A number of theoretical and experimental investigations have been made into the nature of purlin-sheeting systems over the past 30 years. These systems commonly consist of cold-formed zed or channel section purlins, connected to corrugated sheeting. They have proven difficult to model due to the complexity of both the purlin deformation and the restraint provided to the purlin by the sheeting. Part 1 of this paper presented a non-linear elasto plastic finite element model which, by incorporating both the purlin and the sheeting in the analysis, allowed the interaction between the two components of the system to be modelled. This paper presents a simplified version of the first model which has considerably decreased requirements in terms of computer memory, running time and data preparation. The Simplified Model includes only the purlin but allows for the sheeting's shear and rotational restraints by modelling these effects as springs located at the purlin-sheeting connections. Two accompanying programs determine the stiffness of these springs numerically. As in the Full Model, the Simplified Model is able to account for the cross-sectional distortion of the purlin, the shear and rotational restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The model requires no experimental or empirical input and its validity is shown by its goon con elation with experimental results. (C) 1997 Elsevier Science Ltd.
Resumo:
The St. Lawrence Island polynya (SLIP) is a commonly occurring winter phenomenon in the Bering Sea, in which dense saline water produced during new ice formation is thought to flow northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter darkness and inclement weather conditions have made continuous in situ and remote observation of this polynya difficult. However, imagery acquired from the European Space Agency ERS-1 Synthetic Aperture Radar (SAR) has allowed observation of the St. Lawrence Island polynya using both the imagery and derived ice displacement products. With the development of ARCSyM, a high resolution regional model of the Arctic atmosphere/sea ice system, simulation of the SLIP in a climate model is now possible. Intercomparisons between remotely sensed products and simulations can lead to additional insight into the SLIP formation process. Low resolution SAR, SSM/I and AVHRR infrared imagery for the St. Lawrence Island region are compared with the results of a model simulation for the period of 24-27 February 1992. The imagery illustrates a polynya event (polynya opening). With the northerly winds strong and consistent over several days, the coupled model captures the SLIP event with moderate accuracy. However, the introduction of a stability dependent atmosphere-ice drag coefficient, which allows feedbacks between atmospheric stability, open water, and air-ice drag, produces a more accurate simulation of the SLIP in comparison to satellite imagery. Model experiments show that the polynya event is forced primarily by changes in atmospheric circulation followed by persistent favorable conditions: ocean surface currents are found to have a small but positive impact on the simulation which is enhanced when wind forcing is weak or variable.