952 resultados para Microbial viability
Resumo:
Genomic approaches continue to provide unprecedented insight into the microbiome, yet host immune interactions with diverse microbiota can be difficult to study. We therefore generated a microbial microarray containing defined antigens isolated from a broad range of microbial flora to examine adaptive and innate immunity. Serological studies with this microarray show that immunoglobulins from multiple mammalian species have unique patterns of reactivity, whereas exposure of animals to distinct microbes induces specific serological recognition. Although adaptive immunity exhibited plasticity toward microbial antigens, immunological tolerance limits reactivity toward self. We discovered that several innate immune galectins show specific recognition of microbes that express self-like antigens, leading to direct killing of a broad range of Gram-negative and Gram-positive microbes. Thus, host protection against microbes seems to represent a balance between adaptive and innate immunity to defend against evolving antigenic determinants while protecting against molecular mimicry.
Resumo:
Epidemiological studies have demonstrated that most humans infected with Echinococcus spp. exhibit resistance to disease. When infection leads to disease, the parasite is partially controlled by host immunity: in case of immunocompetence, the normal alveolar echinococcosis (AE) or cystic echinococcosis (CE) situation, the metacestode grows slowly, and first clinical signs appear years after infection; in case of impaired immunity (AIDS; other immunodeficiencies), uncontrolled proliferation of the metacestode leads to rapidly progressing disease. Assessing Echinococcus multilocularis viability in vivo following therapeutic interventions in AE patients may be of tremendous benefit when compared with the invasive procedures used to perform biopsies. Current options are F18-fluorodeoxyglucose-positron emission tomography (FDG-PET), which visualizes periparasitic inflammation due to the metabolic activity of the metacestode, and measurement of antibodies against recEm18, a viability-associated protein, that rapidly regresses upon metacestode inactivation. For Echinococcus granulosus, similar prognosis-associated follow-up parameters are still lacking but a few candidates may be listed. Other possible markers include functional and diffusion-weighted Magnetic Resonance Imaging (MRI), and measurement of products from the parasite (circulating antigens or DNA), and from the host (inflammation markers, cytokines, or chemokines). Even though some of them have been promising in pilot studies, none has been properly validated in an appropriate number of patients until now to be recommended for further use in clinical settings. There is therefore still a need to develop reliable tools for improved viability assessment to provide the sufficient information needed to reliably withdraw anti-parasite benzimidazole chemotherapy, and a basis for the development of new alternative therapeutic tools.
Resumo:
Systemic immune activation, a major determinant of HIV disease progression, is the result of a complex interplay between viral replication, dysregulation of the immune system, and microbial translocation due to gut mucosal damage. While human genetic variants influencing HIV viral load have been identified, it is unknown to what extent the host genetic background contributes to inter-individual differences in other determinants of HIV pathogenesis like gut damage and microbial translocation. Using samples and data from 717 untreated participants in the Swiss HIV Cohort Study and a genome-wide association study design, we searched for human genetic determinants of plasma levels of intestinal fatty-acid binding protein (I-FABP/FABP2), a marker of gut damage, and of soluble sCD14 (sCD14), a marker of LPS bioactivity and microbial translocation. We also assessed the correlations between HIV viral load, sCD14 and I-FABP. While we found no genome-wide significant determinant of the tested plasma markers, we observed strong associations between sCD14 and both HIV viral load and I-FABP, shedding new light on the relationships between processes that drive progression of untreated HIV infection.
Resumo:
An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions.
Resumo:
The efficacy and tolerance of a novel microbial 6-phytase were investigated in rainbow trout, Oncorhynchus mykiss, and Nile tilapia, Oreochromis niloticus. Reference diets were sufficient in available phosphorus (P). The test diet limiting in available P was supplemented with phytase at 500, 1000, or 2000 phytase units/kg feed. The enzyme was effective in increasing total P apparent digestibility coefficient in relation to increasing the dose of phytase in rainbow trout and Nile tilapia. Zinc apparent digestibility improved in relation to phytase supplementation in rainbow trout. P release due to phytase supplementation ranged from 0.06 to 0.18% P/kg feed in rainbow trout and from 0.13 to 0.26% P/kg feed in Nile tilapia. A 58-d performance trial was conducted to evaluate tolerance of fish to phytase supplementation. Dietary treatments consisted of a basal diet without phytase or supplemented with 2000 and 200,000 phytase units/kg feed. Results indicate that this novel microbial 6-phytase is well tolerated by fish. Significant improvements for growth as well as feed conversion ratio were observed when the phytase was fed at 2000 phytase units/kg feed. This phytase is proven efficient in releasing P from phytate and could be added when plants are used for fish meal replacement in diets for salmonid and omnivorous fish.