978 resultados para Micro-simulation
Resumo:
We propose an iterative algorithm to simulate the dynamics generated by any n-qubit Hamiltonian. The simulation entails decomposing the unitary time evolution operator U (unitary) into a product of different time-step unitaries. The algorithm product-decomposes U in a chosen operator basis by identifying a certain symmetry of U that is intimately related to the number of gates in the decomposition. We illustrate the algorithm by first obtaining a polynomial decomposition in the Pauli basis of the n-qubit quantum state transfer unitary by Di Franco et al. [Phys. Rev. Lett. 101, 230502 (2008)] that transports quantum information from one end of a spin chain to the other, and then implement it in nuclear magnetic resonance to demonstrate that the decomposition is experimentally viable. We further experimentally test the resilience of the state transfer to static errors in the coupling parameters of the simulated Hamiltonian. This is done by decomposing and simulating the corresponding imperfect unitaries.
Resumo:
Since the end of second world war, extra high voltage ac transmission has seen its development. The distances between generating and load centres as well as the amount of power to be handled increased tremendously for last 50 years. The highest commercial voltage has increased to 765 kV in India and 1,200 kV in many other countries. The bulk power transmission has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. Hence the present investigation aims to study accurately, the field distribution for various types of porcelain/ceramic insulators (Normal and Antifog discs) used for high-voltage transmission. The surface charge simulation method is employed for the field computation. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.
Resumo:
The bulk of power transmission from the generating stations to the load centres is carried through overhead lines. The distances involved could span several hundreds of kilometres. To minimize line losses, power transmission over such long distances is carried out at high voltages (several hundreds of kV). A network of outdoor lines operating at different voltages has been found to be the most economical method of power delivery. The disc insulators perform dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower. These insulators have to perform under various environmental conditions; hence the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. In view of this the present investigation aims to simulate the surface electric field stress on different types of porcelain/ceramic insulators; both normal and anti-fog type discs which are used for high voltage transmission/distribution systems are considered. The surface charge simulation method is employed for the field computation to simulate potential, electric field, surface and bulk/volume stress.
Resumo:
The present work is aimed at studying the influence of electrolyte chemistry on the voltage-time (V-T) response characteristics, phase structure, surface morphology, film growth rate and corrosion properties of titania films fabricated by micro arc oxidation (MAO) on Cp Ti. The titania films were developed with a sodium phosphate based reference electrolyte comprising the additives such as sodium carbonate (Na2CO3), sodium nitrite (NaNO2) and urea (CO(NH2)(2)). The phase composition, surface morphology, elemental composition and thickness of the films were assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The corrosion characteristics of the fabricated films were studied under Kokubo simulated body fluid (SBF) condition by potentiodynamic polarization, long term potential and linear polarization resistance (LPR) measurements and electrochemical impedance spectroscopy (EIS) methods. In addition, the corrosion characteristics of the grown films were analyzed by EIS curve fitting and equivalent circuit modeling. Salt spray test (SST) as per ASTM B 117 standard was also conducted to verify the corrosion resistance of the grown films. The XRD results showed that the titania films were composed of both anatase and rutile phases at different proportions. Besides, the films grown in carbonate and nitrite containing electrolyte systems showed an enhanced growth of their rutile phase in the 1 0 1] direction which could be attributed to the modifications introduced in the growth process by the abundant oxygen available during the process. The SEM-EDX and elemental mapping results showed that the respective electrolyte borne elements were incorporated and distributed uniformly in all the films. Among all the grown films under study, the film developed in carbonate containing electrolyte system exhibited considerably improved corrosion resistance due to suitable modifications in its structural and morphological characteristics. The rate of anatase to rutile phase transformation and the rutile growth direction were strongly influenced by the abundant oxidizing species available during the film growth process. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Background and aim of the study: The quantification of incidentally found aortic valve calcification on computed tomography (CT) is not performed routinely, as data relating to the accuracy of aortic valve calcium for estimating the severity of aortic stenosis (AS) is neither consistent nor validated. As aortic valve calcium quantification by CT is confounded by wall and coronary ostial calcification, as well as motion artifact, the ex-vivo micro-computed tomography (micro-CT) of stenotic aortic valves allows a precise measurement of the amounts of calcium present. The study aim, using excised aortic valves from patients with confirmed AS, was to determine if the amount of calcium on micro-CT correlated with the severity of AS. Methods: Each of 35 aortic valves that had been excised from patients during surgical valve replacement were examined using micro-CT imaging. The amount of calcium present was determined by absolute and proportional values of calcium volume in the specimen. Subsequently, the correlation between calcium volume and preoperative mean aortic valve gradient (MAVG), peak transaortic velocity (V-max), and aortic valve area (AVA) on echocardiography, was evaluated. Results: The mean calcium volume across all valves was 603.2 +/- 398.5 mm(3), and the mean ratio of calcium volume to total valve volume was 0.36 +/- 0.16. The mean aortic valve gradient correlated positively with both calcium volume and ratio (r = 0.72, p <0.001). V-max also correlated positively with the calcium volume and ratio (r = 0.69 and 0.76 respectively; p <0.001). A logarithmic curvilinear model proved to be the best fit to the correlation. A calcium volume of 480 mm(3) showed sensitivity and specificity of 0.76 and 0.83, respectively, for a diagnosis of severe AS, while a calcium ratio of 0.37 yielded sensitivity and specificity of 0.82 and 0.94, respectively. Conclusion: A radiological estimation of calcium amount by volume, and its proportion to the total valve volume, were shown to serve as good predictive parameters for severe AS. An estimation of the calcium volume may serve as a complementary measure for determining the severity of AS when aortic valve calcification is identified on CT imaging. The Journal of Heart Valve Disease 2012;21:320-327
Resumo:
Density distribution, fluid structure and solvation forces for fluids confined in Janus slit-shaped pores are investigated using grand canonical Monte Carlo simulations. By varying the degree of asymmetry between the two smooth surfaces that make up the slit pores, a wide variety of adsorption situations are observed. The presence of one moderately attractive surface in the asymmetric pore is sufficient to disrupt the formation of frozen phases observed in the symmetric case. In the extreme case of asymmetry in which one wall is repulsive, the pore fluid can consist of a frozen contact layer at the attractive surface for smaller surface separations (H) or a frozen contact layer with liquid-like and gas-like regions as the pore width is increased. The superposition approximation, wherein the solvation pressure and number density in the asymmetric pores can be obtained from the results on symmetric pores, is found to be accurate for H > 4 sigma(ff), where sigma(ff) is the Lennard-Jones fluid diameter and within 10% accuracy for smaller surface separations. Our study has implications in controlling stick slip and overcoming static friction `stiction' in micro and nanofluidic devices.
Resumo:
Flap dynamics of HIV-1 protease (HIV-pr) controls the entry of inhibitors and substrates to the active site. Dynamical models from previous simulations are not all consistent with each other and not all are supported by the NMR results. In the present work, the er effect of force field on the dynamics of HIV-pr is investigated by MD simulations using three AMBER force fields ff99, ff99SB, and ff03. The generalized order parameters for amide backbone are calculated from the three force fields and compared with the NMR S2 values. We found that the ff99SB and ff03 force field calculated order parameters agree reasonably well with the NMR S2 values, whereas ff99 calculated values deviate most from the NMR order parameters. Stereochemical geometry of protein models from each force field also agrees well with the remarks from NMR S2 values. However, between ff99SB and ff03, there are several differences, most notably in the loop regions. It is found that these loops are, in general, more flexible in the ff03 force field. This results in a larger active site cavity in the simulation with the ff03 force field. The effect of this difference in computer-aided drug design against flexible receptors is discussed.
Resumo:
Small quantity of energetic material coated on the inner wall of a polymer tube is proposed as a new method to generate micro-shock waves in the laboratory. These micro-shock waves have been harnessed to develop a novel method of delivering dry particle and liquid jet into the target. We have generated micro-shock waves with the help of reactive explosive compound high melting explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and traces of aluminium] coated polymer tube, utilising 9 J of energy. The detonation process is initiated electrically from one end of the tube, while the micro-shock wave followed by the products of detonation escape from the open end of the polymer tube. The energy available at the open end of the polymer tube is used to accelerate tungsten micro-particles coated on the other side of the diaphragm or force a liquid jet out of a small cavity filled with the liquid. The micro-particles deposited on a thin metal diaphragm (typically 100-mu m thick) were accelerated to high velocity using micro-shock waves to penetrate the target. Tungsten particles of 0.7 mu m diameter have been successfully delivered into agarose gel targets of various strengths (0.6-1.0 %). The device has been tested by delivering micro-particles into potato tuber and Arachis hypogaea Linnaeus (ground nut) stem tissue. Along similar lines, liquid jets of diameter 200-250 mu m (methylene blue, water and oils) have been successfully delivered into agarose gel targets of various strengths. Successful vaccination against murine salmonellosis was demonstrated as a biological application of this device. The penetration depths achieved in the experimental targets are very encouraging to develop a future device for biological and biomedical applications.
Resumo:
In situ powder X-ray diffraction (XRD) studies on 3D micro-crystalline tin (II) sulfide (SnS) were carried out at different temperatures. While increasing temperature, the crystal structure of SnS remains stable as orthorhombic, whereas its lattice parameters and unit-cell volume are considerably varied. Further, these 3D micro-crystalline structures have showed a negative thermal expansion along the a-axis and positive expansion along the b- and c-axes. However, the overall drop along the a-axis of SnS crystals is nearly equal to their expansion along the c-axis. The observed changes in the structural properties of SnS micro-crystallites with temperature are discussed and reported.
Resumo:
Nanoindentation studies on Ge15Te85-xInx glasses indicate that the hardness and elastic modulus of these glasses increase with indium concentration. While a pronounced plateau is seen in the elastic modulus in the composition range 3 <= x <= 7, the hardness exhibits a change in slope at compositions x = 3 and x = 7. Also, the density exhibits a broad maximum in this composition range. The observed changes in the mechanical properties and density are clearly associated with the thermally reversing window in Ge15Te85-xInx glasses in the composition range 3 <= x <= 7. In addition, a local minimum is seen in density and hardness around x = 9, the chemical threshold of the system. Further, micro-Raman studies reveal that as-quenched Ge15Te85-xInx samples exhibit two prominent peaks, at 123 cm(-1) and 155 cm(-1). In thermally annealed samples, the peaks at 120 cm(-1) and 140 cm(-1), which are due to crystalline Te, emerge as the strongest peaks. The Raman spectra of polished samples are similar to those of annealed samples, with strong peaks at 123 cm(-1) and 141 cm(-1). The spectra of lightly polished samples outside the thermally reversing window resemble those of thermally annealed samples; however, the spectra of glasses with compositions in the thermally reversing window resemble those of as-quenched samples. This observation confirms the earlier idea that compositions in the thermally reversing window are non-aging and are more stable. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We investigate the effect of bilayer melting transition on thermodynamics and dynamics of interfacial water using molecular dynamics simulation with the two-phase thermodynamic model. We show that the diffusivity of interface water depicts a dynamic crossover at the chain melting transition following an Arrhenius behavior until the transition temperature. The corresponding change in the diffusion coefficient from the bulk to the interface water is comparable with experimental observations found recently for water near 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles Phys. Chem. Chem. Phys. 13, 7732 (2011)]. The entropy and potential energy of interfacial water show distinct changes at the bilayer melting transition, indicating a strong correlation in the thermodynamic state of water and the accompanying first-order phase transition of the bilayer membrane. DOI: 10.1103/PhysRevLett.110.018303
Resumo:
Given the increasing cost of designing and building new highway pavements, reliability analysis has become vital to ensure that a given pavement performs as expected in the field. Recognizing the importance of failure analysis to safety, reliability, performance, and economy, back analysis has been employed in various engineering applications to evaluate the inherent uncertainties of the design and analysis. The probabilistic back analysis method formulated on Bayes' theorem and solved using the Markov chain Monte Carlo simulation method with a Metropolis-Hastings algorithm has proved to be highly efficient to address this issue. It is also quite flexible and is applicable to any type of prior information. In this paper, this method has been used to back-analyze the parameters that influence the pavement life and to consider the uncertainty of the mechanistic-empirical pavement design model. The load-induced pavement structural responses (e.g., stresses, strains, and deflections) used to predict the pavement life are estimated using the response surface methodology model developed based on the results of linear elastic analysis. The failure criteria adopted for the analysis were based on the factor of safety (FOS), and the study was carried out for different sample sizes and jumping distributions to estimate the most robust posterior statistics. From the posterior statistics of the case considered, it was observed that after approximately 150 million standard axle load repetitions, the mean values of the pavement properties decrease as expected, with a significant decrease in the values of the elastic moduli of the expected layers. An analysis of the posterior statistics indicated that the parameters that contribute significantly to the pavement failure were the moduli of the base and surface layer, which is consistent with the findings from other studies. After the back analysis, the base modulus parameters show a significant decrease of 15.8% and the surface layer modulus a decrease of 3.12% in the mean value. The usefulness of the back analysis methodology is further highlighted by estimating the design parameters for specified values of the factor of safety. The analysis revealed that for the pavement section considered, a reliability of 89% and 94% can be achieved by adopting FOS values of 1.5 and 2, respectively. The methodology proposed can therefore be effectively used to identify the parameters that are critical to pavement failure in the design of pavements for specified levels of reliability. DOI: 10.1061/(ASCE)TE.1943-5436.0000455. (C) 2013 American Society of Civil Engineers.
Resumo:
The deformation dynamics of metal foils (<0.25 mm thick) subjected to micro-blast wave are presented in this paper. The energy of micro-blast wave emanating from the open end of a polymer tube is used to deliver micro-particles for bio-medical applications. In these experiments metal foils are used to transfer the energy of the micro-blast wave to the micro-particles. Using cubic root scaling law the over pressure of the blast wave at the open end of the polymer tube is estimated and using this peak plate over pressure is estimated. The finite element analysis is used to estimate the velocity profile of the deforming metal foils. The finite element analysis results are compared with experimental results for the maximum deformation and deformed shape. Based on the deformation velocity, metal foil to be used for experiments is selected. Among the materials investigated 0.1 mm thick brass foil has the maximum velocity of 205 m/s and is used in the experiments. It is found from finite element analysis that the particles deposited within a radius of 0.5 mm will leave the foil with nearly equal velocity (error < 5%). The spray cone angle which is the angle of deviation of the path of particles from the axis of the polymer tube is also estimated and found to be less than 7 degrees up to a radius of 0.75 mm. Illustrative experiments are carried out to deliver micro particles (0.7 mu m diameter tungsten) into plant tissues. Particle penetration depth up to 460 mu m was achieved in ground tissue of potato tuber. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Experimental and numerical studies of slurry generation using a cooling slope are presented in the paper. The slope having stainless steel body has been designed and constructed to produce semisolid A356 Al alloy slurry. The pouring temperature of molten metal, slope angle of the cooling slope and slope wall temperature were varied during the experiment. A multiphase numerical model, considering liquid metal and air, has been developed to simulate the liquid metal flow along the cooling channel using an Eulerian two-phase flow approach. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling channel following Schiel's equation. The continuity, momentum and energy equations are solved considering thin wall boundary condition approach. During solidification of the melt, based on the liquid fraction and latent heat of the alloy, temperature of the alloy is modified continuously by introducing a modified temperature recovery method. Numerical simulations has been carried out for semisolid slurry formation by varying the process parameters such as angle of the cooling slope, cooling slope wall temperature and melt superheat temperature, to understand the effect of process variables on cooling slope semisolid slurry generation process such as temperature distribution, velocity distribution and solid fraction of the solidifying melt. Experimental validation performed for some chosen cases reveals good agreement with the numerical simulations.
Resumo:
We have studied the effect of dendrimer generation on the interaction between dsDNA and the PAMAM dendrimer using force biased simulation of dsDNA with three generations of dendrimer: G3, G4, and G5. Our results for the potential of mean force (PMF) and the dendrimer asphericity along the binding pathway, combined with visualization of the simulations, demonstrate that dendrimer generation has a pronounced impact on the interaction. The PMF increases linearly with increasing generation of the dendrimer. While, in agreement with previous results, we see an increase in the extent to which the dendrimer bends the dsDNA with increasing dendrimer generation, we also see that the deformation of the dendrimer is greater with smaller generation of the dendrimer. The larger dendrimer forces the dsDNA to conform to its structure, while the smaller dendrimer is forced to conform to the structure of the dsDNA. Monitoring the number of bound cations at different values of force bias distance shows the expected effect of ions being expelled when the dendrimer binds dsDNA.