917 resultados para Michael addition
Resumo:
The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are computationally expensive, there is a tradeoff between complexity, spatial resolution, simulation length, and ensemble size. The methods used to assess climate impacts are examined in the context of this trade-off. An emphasis on complexity allows simulation of coupled mechanisms, such as the carbon cycle and feedbacks between agricultural land management and climate. In addition to improving skill, greater spatial resolution increases relevance to regional planning. Greater ensemble size improves the sampling of probabilities. Research from major international projects is used to show the importance of synergistic research efforts. The primary climate impact examined is crop yield, although many of the issues discussed are relevant to hydrology and health modeling. Methods used to bridge the scale gap between climate and crop models are reviewed. Recent advances include large-area crop modeling, quantification of uncertainty in crop yield, and fully integrated crop–climate modeling. The implications of trends in computer power, including supercomputers, are also discussed.
Resumo:
This paper discusses the risks of a shutdown of the thermohaline circulation (THC) for the climate system, for ecosystems in and around the North Atlantic as well as for fisheries and agriculture by way of an Integrated Assessment. The climate model simulations are based on greenhouse gas scenarios for the 21st century and beyond. A shutdown of the THC, complete by 2150, is triggered if increased freshwater input from inland ice melt or enhanced runoff is assumed. The shutdown retards the greenhouse gas-induced atmospheric warming trend in the Northern Hemisphere, but does not lead to a persistent net cooling. Due to the simulated THC shutdown the sea level at the North Atlantic shores rises by up to 80 cm by 2150, in addition to the global sea level rise. This could potentially be a serious impact that requires expensive coastal protection measures. A reduction of marine net primary productivity is associated with the impacts of warming rather than a THC shutdown. Regional shifts in the currents in the Nordic Seas could strongly deteriorate survival chances for cod larvae and juveniles. This could lead to cod fisheries becoming unprofitable by the end of the 21st century. While regional socioeconomic impacts might be large, damages would be probably small in relation to the respective gross national products. Terrestrial ecosystem productivity is affected much more by the fertilization from the increasing CO2 concentration than by a THC shutdown. In addition, the level of warming in the 22nd to 24th century favours crop production in northern Europe a lot, no matter whether the THC shuts down or not. CO2 emissions corridors aimed at limiting the risk of a THC breakdown to 10% or less are narrow, requiring departure from business-as-usual in the next few decades. The uncertainty about THC risks is still high. This is seen in model analyses as well as in the experts’ views that were elicited. The overview of results presented here is the outcome of the Integrated Assessment project INTEGRATION.
Resumo:
Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, and thus compares their magnitudes. The carbon cycle gives rise to two climate feedback terms: the concentration–carbon feedback, resulting from the uptake of carbon by land and ocean as a biogeochemical response to the atmospheric CO2 concentration, and the climate–carbon feedback, resulting from the effect of climate change on carbon fluxes. In the earth system models of the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP), climate–carbon feedback on warming is positive and of a similar size to the cloud feedback. The concentration–carbon feedback is negative; it has generally received less attention in the literature, but in magnitude it is 4 times larger than the climate–carbon feedback and more uncertain. The concentration–carbon feedback is the dominant uncertainty in the allowable CO2 emissions that are consistent with a given CO2 concentration scenario. In modeling the climate response to a scenario of CO2 emissions, the net carbon cycle feedback is of comparable size and uncertainty to the noncarbon–climate response. To quantify simulated carbon cycle feedbacks satisfactorily, a radiatively coupled experiment is needed, in addition to the fully coupled and biogeochemically coupled experiments, which are referred to as coupled and uncoupled in C4MIP. The concentration–carbon and climate–carbon feedbacks do not combine linearly, and the concentration–carbon feedback is dependent on scenario and time.
Resumo:
Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).
Resumo:
While the Cluster spacecraft were located near the high-latitude magnetopause, between 10:10 and 10:40 UT on 16 January 2004, three typical flux transfer event (FTE) signatures were observed. During this interval, simultaneous and conjugated all-sky camera measurements, recorded at Yellow River Station, Svalbard, are available at 630.0 and 557.7nm that show poleward-moving auroral forms (PMAFs), consistent with magnetic reconnection at dayside magnetopause. Simultaneous FTEs seen at the magnetopause mainly move northward, but having duskward (eastward) and tailward velocity components, roughly consistent with the observed direction of motion of the PMAFs in all-sky images. Between the PMAFs meridional keograms, extracted from the all-sky images, show intervals of lower intensity aurora which migrate equatorward just before the PMAFs intensify. This is strong evidence for an equatorward eroding and poleward moving open-closed boundary (OCB) associated with a variable magnetopause reconnection rate under variable IMF conditions. From the durations of the PMAFs we infer that the evolution time of FTEs is 5-11 minutes from its origin on magnetopause to its addition to the polar cap.
Resumo:
Insoluble calcium salts were added to milk to increase total calcium by 30 mM, without changing properties influencing heat stability, such as pH and ionic calcium. There were no major signs of instability associated with coagulation, sediment formation or fouling when subjected to ultra high temperature (UHT) and in-container sterilisation. The buffering capacity was also unaltered. On the other hand, addition of soluble calcium salts reduced pH, increased ionic calcium and caused coagulation to occur. Calcium chloride showed the largest destabilising effect, followed by calcium lactate and calcium gluconate. Milk became unstable to UHT processing at lower calcium additions compared to in-container sterilisation.
Resumo:
Different stabilising salts and calcium chloride were added to raw milk to evaluate changes in pH, ionic calcium, ethanol stability, casein micelle size and zeta potential. These milk samples were then sterilised at 121 °C for 15 min and stored for 6 months to determine how these properties changed. Addition of tri-sodium citrate (TSC) and di-sodium hydrogen phosphate (DSHP) to milk reduced ionic calcium, increased pH and increased ethanol stability in a concentration-dependent fashion. There was relatively little change in casein micelle size and a slight decrease in zeta potential. Sodium hexametaphosphate (SHMP) also reduced ionic calcium considerably, but its effect on pH was less noticeable. In contrast, sodium dihydrogen phosphate (SDHP) reduced pH but had little effect on ionic calcium. In-container sterilisation of these samples reduced pH, increased ethanol stability and increased casein micelle size, but had variable effects on ionic calcium; for DSHP and SDHP, ionic calcium decreased after sterilisation but, for SHMP, it remained little changed or increased. Milk containing 3.2 mM SHMP and more than 4.5 mM CaCl2 coagulated upon sterilisation. All other samples were stable but there were differences in browning, which increased in intensity as milk pH increased. Heat-induced sediment was not directly related to ionic calcium concentration, so reducing ionic calcium was not the only consideration in terms of improving heat stability. After 6 months of storage, the most acceptable product, in appearance, was that containing SDHP, as this minimised browning during sterilisation and further development of browning during storage.
Resumo:
This paper describes the use of pH and calcium ion electrodes for investigating factors affecting the heat stability of UHT milk with added calcium chloride. Calcium chloride was added to raw milk to manipulate ionic calcium and pH to within the range that may be typically encountered in raw milk of different compositions and microbial quality. Addition of only 5 mM calcium chloride was sufficient to induce considerable changes in pH, ionic calcium and ethanol stability and alter its stability to UHT treatment. There was a strong relationship between pH decrease and increase in ionic calcium when pH was reduced, whether by addition of calcium chloride or by acidification. Calcium chloride addition was found to increase sediment formation in UHT treated milk. However, sediment could be reduced by addition of stabilizers. Those most effective were ones which decreased ionic calcium and increased pH, such as trisodium citrate and disodium hydrogen phosphate. Sediment formation following UHT treatment was only slight for milk samples whose ethanol stability was greater than 80%.
Resumo:
A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
1. Recent changes in European agricultural policy have led to measures to reverse the loss of species-rich grasslands through the creation of new areas on ex-arable land. Ex-arable soils are often characterized by high inorganic nitrogen (N) levels, which lead to the rapid establishment of annual and fast-growing perennial species during the initial phase of habitat creation. The addition of carbon (C) to the soil has been suggested as a countermeasure to reduce plant-available N and alter competitive interactions among plant species. 2. To test the effect of C addition on habitat creation on ex-arable land, an experiment was set up on two recently abandoned fields in Switzerland and on two 6-year-old restoration sites in the UK. Carbon was added as a mixture of either sugar and sawdust or wood chips and sawdust during a period of 2 years. The effects of C addition on soil parameters and vegetation composition were assessed during the period of C additions and 1 year thereafter. 3. Soil nitrate concentrations were reduced at all sites within weeks of the first C addition, and remained low until cessation of the C additions. The overall effect of C addition on vegetation was a reduction in above-ground biomass and cover. At the Swiss sites, the addition of sugar and sawdust led to a relative increase in legume and forb cover and to a decrease in grass cover. The soil N availability, composition of soil micro-organisms and vegetation characteristics continued to be affected after cessation of C additions. 4. Synthesis and applications. The results suggest that C addition in grassland restoration is a useful management method to reduce N availability on ex-arable land. Carbon addition alters the vegetation composition by creating gaps in the vegetation that facilitates the establishment of late-seral plant species, and is most effective when started immediately after the abandonment of arable fields and applied over several years.
Resumo:
Although the effects of nutrient enhancement on aquatic systems are well documented, the consequences of nutritional supplements on soil food webs are poorly understood, and results of past research examining bottom-up effects are often conflicting. In addition, many studies have failed to separate the effects of nutrient enrichment and the physical effects of adding organic matter. In this field study, we hypothesised that the addition of nitrogen to soil would result in a trophic cascade, through detritivores (Collembola) to predators (spiders), increasing invertebrate numbers and diversity. Nitrogen and lime were added to plots in an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps and identified to species. Seventeen species of Collembola were identified from the nitrogen plus lime (N + L) and control plots. Species assemblage, diversity, richness, evenness and total number were not affected by nutrient additions. However, there was an increase in the number of Isotomidae juveniles and Parisotoma anglicana trapped in the N + L plots. Of the 44 spider species identified, over 80% were Linyphiidae. An effect on species assemblage from the addition of N + L to the plots was observed on two of the four sampling dates (July 2002 and June 2003). The linyphiid, Oedothorax retusus, was the only species significantly affected by the treatments and was more likely to be trapped in the control plots. The increased number of juvenile Collembola, and change in community composition of spiders, were consequences of the bottom-up effect caused by nutrient inputs. However, despite efforts to eliminate the indirect effects of nutrient inputs, a reduction in soil moisture in the N + L plots cannot be eliminated as a cause of the invertebrate population changes observed. Even so, this experiment was not confounded by the physical effects of habitat structure reported in most previous studies. It provides evidence of moderate bottom-up influences of epigeic soil invertebrate food webs and distinguishes between nutrient addition and plant physical structure effects. It also emphasises the importance Of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production.