943 resultados para Method error


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many websites offer the opportunity for customers to rate items and then use customers' ratings to generate items reputation, which can be used later by other users for decision making purposes. The aggregated value of the ratings per item represents the reputation of this item. The accuracy of the reputation scores is important as it is used to rank items. Most of the aggregation methods didn't consider the frequency of distinct ratings and they didn't test how accurate their reputation scores over different datasets with different sparsity. In this work we propose a new aggregation method which can be described as a weighted average, where weights are generated using the normal distribution. The evaluation result shows that the proposed method outperforms state-of-the-art methods over different sparsity datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we identify elements in Marx’s economic and political writings that are relevant to contemporary critical discourse analysis (CDA). We argue that Marx can be seen to be engaging in a form of discourse analysis. We identify the elements in Marx’s historical materialist method that support such a perspective, and exemplify these in longitudinal comparison of Marx’s texts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research problem: Overfitting and collinearity problems commonly exist in current construction cost estimation applications and obstruct researchers and practitioners in achieving better modelling results. Research objective and method: A hybrid approach of Akaike information criterion (AIC) stepwise regression and principal component regression (PCR) is proposed to help solve overfitting and collinearity problems. Utilization of this approach in linear regression is validated by comparing it with other commonly used approaches. The mean square error obtained by leave-one-out cross validation (MSELOOCV) is used in model selection in deciding predictive variables.