966 resultados para Medicinal plant analysis
Resumo:
Amber from a Lower Cretaceous outcrop at San Just, located in the Eastern Iberian Peninsula (Escucha Formation, Maestrat Basin), was investigated to evaluate its physico-chemical properties. Thermogravimetric (TG) and Differential Thermogravimetric (DTG) analyses, infra-red spectroscopy, elemental and C-isotope analyses were performed. Physico-chemical differences between the internal light nuclei and the peripheral darker portions of San Just amber can be attributed to processes of diagenetic alteration that preferentially took place in the external amber border colonized by microorganisms (fungi or bacteria) when the resin was still liquid or slightly polymerized. δ13Camber values of different pieces of the same sample, from the nucleus to the external part, are remarkably homogeneous, as are δ13Camber values of the darker peripheral portions and lighter inner parts of the same samples. Hence, neither invasive microorganisms, nor diagenetic alteration, changed the bulk isotopic composition of the amber. δ13C values of different amber samples range from -21.1 to -24 , as expected for C3 plant-derived material. C-isotope analysis, coupled to palaeobotanical, TG and DTG data and infra-red spectra, suggests that San Just amber was exuded by only one conifer species, belonging to either the Cheirolepidiaceae or Aracauriaceae, coniferous families probably living under stable palaeoenvironmental and palaeoecological conditions.
Resumo:
Metals play a vital role in human and plant physiology and important research is directed towards exploring the interrelated mechanisms that govern their interactions with biomolecules. Bioinorganic medicinal chemistry studies the functions, processing, storage and applications of metal ions and their complexes in biological systems. This paper presents a brief discussion about on interactions of metals with biomolecules that determine their intracellular accumulation, where metal ions may fulfill essential functions in cellular metabolism or, in certain cases, exert toxic effects towards cells.
Resumo:
Raw measurement data does not always immediately convey useful information, but applying mathematical statistical analysis tools into measurement data can improve the situation. Data analysis can offer benefits like acquiring meaningful insight from the dataset, basing critical decisions on the findings, and ruling out human bias through proper statistical treatment. In this thesis we analyze data from an industrial mineral processing plant with the aim of studying the possibility of forecasting the quality of the final product, given by one variable, with a model based on the other variables. For the study mathematical tools like Qlucore Omics Explorer (QOE) and Sparse Bayesian regression (SB) are used. Later on, linear regression is used to build a model based on a subset of variables that seem to have most significant weights in the SB model. The results obtained from QOE show that the variable representing the desired final product does not correlate with other variables. For SB and linear regression, the results show that both SB and linear regression models built on 1-day averaged data seriously underestimate the variance of true data, whereas the two models built on 1-month averaged data are reliable and able to explain a larger proportion of variability in the available data, making them suitable for prediction purposes. However, it is concluded that no single model can fit well the whole available dataset and therefore, it is proposed for future work to make piecewise non linear regression models if the same available dataset is used, or the plant to provide another dataset that should be collected in a more systematic fashion than the present data for further analysis.
Resumo:
Thermal and spectroscopic analyses of essential oil extracted from Siparuna guianensis Aublet, an aromatic plant belonging to medicinal ethnobotany family Siparunaceae, were carried out. The plant is known throughout the North and Northeast of Brazil by the name negramina and has wide application as a natural insect repellent. Thermogravimetric analyses were correlated with the Arrhenius Equation to provide kinetic parameters of evaporation, including activation energy and frequency factor. Differential scanning calorimetric analysis showed the presence of an exothermic oxidation peak, probably as a result of transformations and decomposition of the solid structure before melting.
Resumo:
Determination of the viability of bacteria by the conventional plating technique is a time-consuming process. Methods based on enzyme activity or membrane integrity are much faster and may be good alternatives. Assessment of the viability of suspensions of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) using the fluorescent probes Calcein acetoxy methyl ester (Calcein AM), carboxyfluorescein diacetate (cFDA), and propidium iodide (PI) in combination with flow cytometry was evaluated. Heat-treated and viable (non-treated) Cmm cells labeled with Calcein AM, cFDA, PI, or combinations of Calcein AM and cFDA with PI, could be distinguished based on their fluorescence intensity in flow cytometry analysis. Non-treated cells showed relatively high green fluorescence levels due to staining with either Calcein AM or cFDA, whereas damaged cells (heat-treated) showed high red fluorescence levels due to staining with PI. Flow cytometry also allowed a rapid quantification of viable Cmm cells labeled with Calcein AM or cFDA and heat-treated cells labeled with PI. Therefore, the application of flow cytometry in combination with fluorescent probes appears to be a promising technique for assessing viability of Cmm cells when cells are labeled with Calcein AM or the combination of Calcein AM with PI.
Resumo:
The chemical indexes, suggested by Gottlieb et al., have not been used before regarding evolutionary tendency of species in the Swartzia genus. However, the importance of this work encouraged for an analysis of the Swartzia genus using the metabolites isolated from nine species. The analysis, based on calculated chemical indexes, provided an evolutionary tendency for these plants, which correlates with the classification based on morphological analysis.
Resumo:
Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.
Resumo:
Cordia curassavica (Jacq.) Roem. & Schult. (Boraginaceae), also referred to as Cordia verbenacea DC, has been traditionally used for medicinal purposes. This study was driven to verify the behavior of the species in similar conditions to its natural environment, such as high light intensity and sandbank soil, and in conditions of low light intensity and fertilized substratum (dystroferric red nitosoil plus earthworm humus). The growth of the plant, the income of leaf crude extracts and, in the alcoholic extract, the number of substances found in thin layer cromatography and the toxicity of the substratum was observed. The results indicated that the growth of the root biomass, stem and leaves in discharge or lower light intensity was similar, but smaller in sandbank soil than in fertilized soil. The relative income of extracts in ether of petroleum and alcohol was larger in high light intensity and fertilized substratum. The light intensity and the substratum type didn't affect the number of substances detected in the alcoholic extract or the toxicity of this extract. Stains corresponding to the rosmarinic acid were only evidenced in some samples of the alcoholic extract, not allowing the verification of the effect of the treatments about its production.
Resumo:
Subcellular changes are relevant to understand plant organogenesis and embryogenesis in the early stages of cell development. The cytology during cell development in tissue culture is however still poorly characterized. This study aimed to characterize the ultrastructural differences related to callogenesis of anthers, ovaries, leaf and nodal segments of Inga vera Willd. subsp. Affinis (DC.) T.D. Penn. Flower buds, nodal segments and leaves were disinfected and inoculated in test tubes containing MS medium with 3% sucrose and 4.5µM 2.4-D, except for leaf callogenesis, where 9µM of this auxin was used, and for the callogenesis of anthers and ovaries, where the culture medium was enriched with 0.25% activated charcoal and 90µM PVP. After 45 days in culture medium, the anther, ovary, leaf and nodal segment calli were fixed in Karnovisky and prepared for visualization by scanning and transmission electron microscopy. Ultrastructural differences were observed among the callus cells of anthers, ovaries, segments and leaves. There was no evidence of somatic embryo formation in the anther, leaf and nodal segment calli, in spite of some embryogenic characteristics in the cells. The ovary calli, with indications of embryo formation, seem to be the most responsive explant source for embryogenesis.
Resumo:
Water and fertilizer among the production factors are the elements that most restrict the production of cashew. The precise amount of these factors is essential to the success of the crop yield. This research aimed to determine the best factor-product ratio and analyze technical and economic indicators, of productivity of the cashew clone BRS 189 (Anacardium occidentale) to production factors water and potassium. The experiment was conducted from May 2009 to December 2009 in an experimental area of 56.0 m x 112.0 m in the irrigated Curu - Pentecoste, located in the municipality of Pentecoste, Ceará, Brazil. Production factors water (W) and potassium (K) were the independent variables and productivity (Y), the dependent variable. Ten statistical models that have proven satisfactory for obtaining production function were tested. The marginal rate of substitution was obtained through the ratio of the potassium marginal physical product and the water marginal physical product. The most suited model to the conditions of the experiment was the quadratic polynomial without intercept and interaction. Considering that the price of the water was 0.10 R$ mm -1, the price of the potassium 2.19 R$ kg -1 and the price of the cashew 0.60 R$ kg-1, the amounts of water and K2O to obtain the maximum net income were 6,349.1 L plant-1 of water and 128.7 g plant -1year, -1 respectively. Substituting the values obtained in the production function, the maximum net income was achieved with a yield of 7,496.8 kg ha-1 of cashew.
Resumo:
Tässä diplomityössä tehtiin Olkiluodon ydinvoimalaitoksella sijaitsevan käytetyn ydinpolttoaineen allasvarastointiin perustuvan välivaraston todennäköisyysperustainen ulkoisten uhkien riskianalyysi. Todennäköisyysperustainen riskianalyysi (PRA) on yleisesti käytetty riskien tunnistus- ja lähestymistapa ydinvoimalaitoksella. Työn tarkoituksena oli laatia täysin uusi ulkoisten uhkien PRA-analyysi, koska Suomessa ei ole aiemmin tehty vastaavanlaisia tämän tutkimusalueen riskitarkasteluja. Riskitarkastelun motiivina ovat myös maailmalla tapahtuneiden luonnonkatastrofien vuoksi korostunut ulkoisten uhkien rooli käytetyn ydinpolttoaineen välivarastoinnin turvallisuudessa. PRA analyysin rakenne pohjautui tutkimuksen alussa luotuun metodologiaan. Analyysi perustuu mahdollisten ulkoisten uhkien tunnistamiseen pois lukien ihmisen aikaansaamat tahalliset vahingot. Tunnistettujen ulkoisten uhkien esiintymistaajuuksien ja vahingoittamispotentiaalin perusteella ulkoiset uhat joko karsittiin pois tutkimuksessa määriteltyjen karsintakriteerien avulla tai analysoitiin tarkemmin. Tutkimustulosten perusteella voitiin todeta, että tiedot hyvin harvoin tapahtuvista ulkoisista uhista ovat epätäydellisiä. Suurinta osaa näistä hyvin harvoin tapahtuvista ulkoisista uhista ei ole koskaan esiintynyt eikä todennäköisesti koskaan tule esiintymään Olkiluodon vaikutusalueella tai edes Suomessa. Esimerkiksi salaman iskujen ja öljyaltistuksen roolit ja vaikutukset erilaisten komponenttien käytettävyyteen ovat epävarmasti tunnettuja. Tutkimuksen tuloksia voidaan pitää kokonaisuudessaan merkittävinä, koska niiden perusteella voidaan osoittaa ne ulkoiset uhat, joiden vaikutuksia olisi syytä tutkia tarkemmin. Yksityiskohtaisempi tietoisuus hyvin harvoin esiintyvistä ulkoisista uhista tarkentaisi alkutapahtumataajuuksien estimaatteja.
Resumo:
Asclepias mellodora St. Hil. is a native acute toxic species frequent in the grasslands of the Buenos Aires province, Argentina, whose toxicity had not been assessed until now. This study evaluates the minimal lethal dose of this species for sheep, and the possibility of microscopically recognizing its fragments in gastrointestinal contents as a complementary diagnostic tool in necropsies. Three Frisona sheep (average LW=55±4.5 kg) were dosed via an esophageal tube with each one of the following doses of asclepias: 8.0, 5.0, 2.0 and 0.8 g DM.kg LW-1. Sheep poisoned with the three higher doses died between 10 and 85 h after intoxication, but those receiving the lower dose did not. During necropsies we: 1) determined the dry weight of the contents of rumen+reticulum, omasum+abomasum, and large intestine, 2) estimated the percentages of asclepias fragments by microanalysis correcting for digestion effects on fragment recognition, and 3) calculated the total mass of asclepias in the digestive tract of each animal. For the three higher doses, the mass of asclepias identified in the total ingesta was 12.3±3.4% of the amount supplied, possibly because of the strong diarrhea its ingestion produced. The percentages of asclepias in rumen+reticulum did not differ from the average quantified for the entire tract. The results of this study indicate that the minimal lethal doses of asclepias for sheep is between 2.0 and 0.8g DM·kg LW-1, and that the microhistological analysis of the rumen+reticulum, the easiest region to sample, can be used to confirm the ingestion of this toxic species, although the estimated percentage will be not a good estimator of the ingested percentage.
Resumo:
Plant-virus interactions are very complex in nature and lead to disease and symptom formation by causing various physiological, metabolic and developmental changes in the host plants. These interactions are mainly the outcomes of viral hijacking of host components to complete their infection cycles and of host defensive responses to restrict the viral infections. Viral genomes contain only a small number of genes often encoding for multifunctional proteins, and all are essential in establishing a viral infection. Thus, it is important to understand the specific roles of individual viral genes and their contribution to the viral life cycles. Among the most important viral proteins are the suppressors of RNA silencing (VSRs). These proteins function to suppress host defenses mediated by RNA silencing and can also serve in other functions, e.g. in viral movement, transactivation of host genes, virus replication and protein processing. Thus these proteins are likely to have a significant impact on host physiology and metabolism. In the present study, I have examined the plant-virus interactions and the effects of three different VSRs on host physiology and gene expression levels by microarray analysis of transgenic plants that express these VSR genes. I also studied the gene expression changes related to the expression of the whole genome of Tobacco mosaic virus (TMV) in transgenic tobacco plants. Expression of the VSR genes in the transgenic tobacco plants causes significant changes in the gene expression profiles. HC-Pro gene derived from the Potyvirus Y (PVY) causes alteration of 748 and 332 transcripts, AC2 gene derived from the African cassava mosaic virus (ACMV) causes alteration of 1118 and 251transcripts, and P25 gene derived from the Potyvirus X (PVX) causes alterations of 1355 and 64 transcripts in leaves and flowers, respectively. All three VSRs cause similar up-regulation in defense, hormonally regulated and different stress-related genes and down-regulation in the photosynthesis and starch metabolism related genes. They also induce alterations that are specific to each viral VSR. The phenotype and transcriptome alterations of the HC-Pro expressing transgenic plants are similar to those observed in some Potyvirus-infected plants. The plants show increased protein degradation, which may be due to the HC-Pro cysteine endopeptidase and thioredoxin activities. The AC2-expressing transgenic plants show a similar phenotype and gene expression pattern as HC-Pro-expressing plants, but also alter pathways related to jasmonic acid, ethylene and retrograde signaling. In the P25 expressing transgenic plants, high numbers of genes (total of 1355) were up-regulated in the leaves, compared to a very low number of down-regulated genes (total of 5). Despite of strong induction of the transcripts, only mild growth reduction and no other distinct phenotype was observed in these plants. As an example of whole virus interactions with its host, I also studied gene expression changes caused by Tobacco mosaic virus (TMV) in tobacco host in three different conditions, i.e. in transgenic plants that are first resistant to the virus, and then become susceptible to it and in wild type plants naturally infected with this virus. The microarray analysis revealed up and down-regulation of 1362 and 1422 transcripts in the TMV resistant young transgenic plants, and up and down-regulation of a total of 1150 and 1200 transcripts, respectively, in the older plants, after the resistance break. Natural TMV infections in wild type plants caused up-regulation of 550 transcripts and down-regulation of 480 transcripts. 124 up-regulated and 29 down-regulated transcripts were commonly altered between young and old TMV transgenic plants, and only 6 up-regulated and none of the down-regulated transcripts were commonly altered in all three plants. During the resistant stage, the strong down-regulation in translation-related transcripts (total of 750 genes) was observed. Additionally, transcripts related to the hormones, protein degradation and defense pathways, cell division and stress were distinctly altered. All these alterations may contribute to the TMV resistance in the young transgenic plants, and the resistance may also be related to RNA silencing, despite of the low viral abundance and lack of viral siRNAs or TMV methylation activity in the plants.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.
Resumo:
This study aimed at assessing the level of weed infestation indifferent areas that were submitted to different soil management for 16 years. Four management systems were studied: (1) agriculture only under conventional tillage system; (2) agriculture only under no-till system; (3) crop-livestock integrationcrop-livestock integration; (4) livestock only. These areas were sampled at three soil depths (0-5, 5-10 and 10-15 cm), and soil was stored in plastic pots and taken to a greenhouse, where soil moisture and weight were standardized. Soil was kept near 70% moisture field capacity, being revolved every 20 days when all seedling emerged from soil were counted, identified and collected for dry mass assessment. The soil coverage by weeds, number of weed seedlings and dry mass of the weedy community were assessed. A phytoecological analysis was conducted. Weed composition is differentdifferent among management systems after 16 years. Areas with livestock showed much smaller number of weed species in comparison to systems where only grain crops are grown. The presence of livestock affects the potential of germination of soil seed bank. Agriculture systems are similar in terms of weed composition along soil profile, while systems involving livestock show little relation in what regards such sampled depths. Conservationist models of land exploration contribute to reduce severity of weed species occurrence in the long term.