932 resultados para Materials - Analysis
Resumo:
The effect of different anatomic shapes and materials of posts in the stress distribution on an endodontically treated incisor was evaluated in this work. This study compared three post shapes (tapered, cylindrical and two-stage cylindrical) made of three different materials (stainless steel, titanium and carbon fibre on Bisphenol A-Glycidyl Methacrylate (Bis-GMA) matrix). Two-dimensional stress analysis was performed using the Finite Element Method. A static load of 100N was applied at 45degrees inclination with respect to the incisor's edge. The stress concentrations did not significantly affect the region adjacent to the alveolar bone crest at the palatine portion of the tooth, regardless of the post shape or material. However, stress concentrations on the post/dentin interface on the palatine side of the tooth root presented significant variations for different post shapes and materials. Post shapes had relatively small impact on the stress concentrations while post materials introduced higher variations on them. Stainless steel posts presented the highest level of stress concentration, followed by titanium and carbon/Bis-GMA posts.
Resumo:
This study reports the photodegradation of 4-chlorophenol (4-CP) in aqueous solution by the photo-Fenton process using solar irradiation. The influence of solution path length, and Fe(NO3)(3) and H2O2 concentrations on the degradation of 4-CP is evaluated by response surface methodology. The degradation process was monitored by the removal of total organic carbon (TOC) and the release of chloride ion. The results showed a very important role of iron concentration either for TOC removal or dechlorination. on the other hand, a negative effect of increasing solution path length on mineralization was observed, which can be compensated by increasing the iron concentration. This permits an adjustment of the iron concentration according to the irradiation exposure area and path length (depth of a tank reactor). Under optimum conditions of 1.5 mM Fe(NO3)(3), 20.0 mM H2O2 and 4.5 cm solution path length, 17 min irradiation under solar light were sufficient to reduce a 72 mg C L-1 solution of 4-CP by 91 (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The oxidative and thermo-mechanical degradation of HDPE was studied during processing in an internal mixer under two conditions: totally and partially filled chambers, which provides lower and higher concentrations of oxygen, respectively. Two types of HDPEs, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturations were analyzed. Materials were processed at 160, 200, and 240 degrees C. Standard rheograrns using a partially filled chamber showed that the torque is much more unstable in comparison to a totally filled chamber which provides an environment depleted of oxygen. Carbonyl and transvinylene group concentrations increased, whereas vinyl group concentration decreased with temperature and oxygen availability. Average number of chain scission and branching (n(s)) was calculated from MWD curves and its plotting versus functional groups' concentration showed that chain scission or branching takes place depending upon oxygen content and vinyl groups' consumption. Chain scission and branching distribution function (CSBDF) values showed that longer chains undergo chain scission easier than shorter ones due to their higher probability of entanglements. This yields macroradicals that react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the oxygen concentration, temperature, and vinyl end groups' content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than the Ziegler-Natta's type at the same processing condition. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Objective. The aim of this study was to evaluate the castability of CP titanium and Ti-6Al-4V alloy castings into Rematitan Plus investment at three different mold temperatures.Methods. A nylon mesh pattern (20 mm with 64 squares and wire of 0.7 mm in diameter) was used for the castability testing. Initially, an image of the wax pattern was obtained by means of a digital camera and the total extension of filaments (mm) was then measured, using the Leica Qwin image analysis system. The mesh sprued was placed in the Rematitan Plus investment material and the castings were made in a Discovery Plasma machine at three different mold temperatures: 430 degrees C (control group), 480 degrees C or 530'C. Ten castings were made for each temperature. The images of the castings were analyzed (Leica Qwin) and the castability index determined by the number of the completely cast segments as a percentage of the wax pattern. Data were analyzed by two-way ANOVA and Tukey's multiple comparison test (a = 0.05) using materials and temperatures as discriminating variables.Results. The Ti-6Al-4V alloy (60.86%) presented a better castability index than CP Ti (48.44%) (p < 0.000001). For CP Ti, the temperature of 530 degrees C (23.96%) presented better castability than at other temperatures, 480 degrees C (14.66%) and 430 degrees C (12.54%), with no difference between them (p < 0.001). For Ti-6Al-4V alloy, there was a statistically significant difference among the three temperatures: 530 degrees C (28.36%) > 480 degrees C (19.66%) > 430 degrees C (15.97%) (p < 0.002).Significance. Within the limitations of this study, the increase in the mold temperature of the Rematitan Plus investment resulted in a better castability index for both materials, and Ti-6Al-4V presented a better castability index than CP Ti. (c) 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Maxillary sinus floor augmentation procedures are currently the treatment of choice when the alveolar crest of the posterior maxilla is insufficient for dental implant anchorage. This procedure aims to obtain enough bone with biomaterial association with the autogenous bone graft to create volume and allow osteo conduction. The objective of this study was to histologically and histometrically evaluate the bone formed after maxillary sinus floor augmentation by grafting with a combination of autogenous bone, from the symphyseal area mixed with DFDBA or hydroxyapatite.Methods: Ten biopsies were taken from 10 patients 10 months after sinus floor augmentation using a combination of 50% autogenous bone plus 50% dernineralized freeze-dried bone allograft (DFDBA group) or 50% autogenous bone plus 50% hydroxyapatite (HA group). Routine histological processing and staining with hernatoxylin and eosin and Masson's trichrome were performed.Results: the histomorphometrical analysis indicated good regenerative results in both groups for the bone tissue mean in the grafted area (50.46 +/- 16.29% for the DFDBA group and 46.79 +/- 8.56% for the HA group). Histological evaluation revealed the presence of mature bone with compact and cancellous areas in both groups. The inflammatory infiltrate was on average nonsignificant and of mononuclear prevalence. Some biopsies showed blocks of the biomaterial in the medullary spaces close to the bone wall, with absence of osteogenic activity.Conclusions: the results indicated that both DFDBA and HA associated with an autogenous bone graft were biocompatible and promoted osteoconduction, acting as a matrix for bone formation. However, both materials were still present after 10 months.
Resumo:
Organotin compounds, largely used as biocides in antifouling paints, are among the most toxic materials introduced into the aquatic environment. Sensitive analytical methods are thus required to characterize their occurrence in environmental and biological matrices. The comparison between two different photometric detectors in terms of analytical performance was carried out for the analysis of organotin compounds. A flame photometric detector (FPD) and a pulsed flame photometric detector (PFPD) were optimized. Their respective sensitivity, linearity range and selectivity were evaluated. Limits of detection obtained for a tributyltin compound (TBT) were 5.0 and 0.9 pg (as Sn) for the FPD and PFPD, respectively, using a 390 nm filter. The PFPD showed higher selectivity, besides reduced gas consumption in the flame, and is very attractive for organotin compound speciation in complex environmental matrices.
Resumo:
The aim of the study was to evaluate wound healing repair of dental sockets after topical application of 5% epsilon-aminocaproic acid (EACA) and the use of fibrin adhesive implant in rats under anticoagulant therapy with warfarin. Sixty Albinus wistar rats were used, divided into three groups of 20. In Group I, the animals were given 0.1 mL/100 mg of 0.9% saline solution per day, beginning 6 days before dental extraction and continuing throughout the experimental period. In Group II, the animals received 0.03 mL of sodium warfarin daily, beginning 6 days before the surgery and continuing until the day of sacrifice; after tooth extractions, the sockets were filled with fibrin adhesive material. In Group III the animals were treated as in Group II, and after extractions, the sockets were irrigated with 5 mL of 5% EACA and filled with the same fibrin adhesive material. All groups presented biological phases of wound healing repair, the differences being evident only in the chronology. The results obtained in Group III were very similar to those of Group I in the last period of wound repair, whereas Group II presented a late chronology compared to the other groups. © 2005 Wiley Periodicals, Inc.
Resumo:
Objective. To identify and quantify the camphorquinone (CQ) used in different brands of composite resins as a function of the shade analyzed.Materials and methods. Filtek Z250 A3 (FZA3), Filtek Z-250 Incisal (FZI), Pyramid Enamel A1 (PEA1), Pyramid Enamel Translucent (PET), Filtek Supreme A3E (FSA3) and Filtek Supreme GT (FSGT) were used. Five hundred milligrams of each resin were weighed and then dissolved in 1.0 ml of methanol. The samples were centrifuged to accelerate the sedimentation of the inorganic particles. 0.8 ml of the supernatant solution was collected with a pipette and assessed under gas chromatography coupled to the mass spectrometer (GC-MS). The results were compared to pure CQ solutions, used as a standard. Student's t-test, (p = 0.05) significant at the level of 5%, compared the results of each brand shade.Results. A smaller amount of camphorquinone was found in Filtek Z-250 (FZI) resin incisal shade when compared to (FZA3) A3 shade. on the other hand, Filtek Supreme resin featured a statistically larger camphorquinone amount in the incisal shade. in Pyramid Enamel resin camphorquinone was found only in shade Al, while the photoinitiator used in the Translucent shade was not identified.Significance. Based on the data obtained, it is possible to conclude that a single composite resin brand may feature differences in amount and type of photoinitiator used. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dielectric thermal analysis has been proved as a valuable tool for monitoring the epoxy curing process and the related rheological properties in the fabrication of polymer-matrix composite materials. This technique also has the potential to be applied in the monitoring of magnet impregnation processes as well as in quality control. In this work we present the quantitative evaluation of the viscosity changing and the curing kinetics for a commercial Stycast epoxy resin system at different temperatures through the impedance analysis. The results showed correlation between the real component of the complex impedance and the isothermal reaction extent. Comparing the dielectric analysis result with the viscosity measured by rotational rheometer we observed a similar behavior reported for dynamic mechanic analysis. The results comparison have shown that the kinetics parameters obtained from DSC and DETA analysis showed different sensitivities related to the characteristics of curing stages. We concluded that the dielectric thermal analysis should be applied in quantitative evaluation of cure kinetics.
Resumo:
Metallographic techniques and digital image processing have been used to investigate heat-treated Ti-6Al-4V pitting corrosion, often used as aircraft components. LM and SEM metallography of 'as received', annealed (heating up to 800 degreesC/30 min and cooling furnace) and aged (heating up to 900 degreesC/30 min, quenching in water, heating up to 540 degreesC/240 min and again water-quenched) microstructures reveal pitting sites at primary and secondary alpha/beta interfaces. Microstructural arrangements influence and corrosive environment association on pit morphology could be demonstrated by digital image analysis and results statistical treatment. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
(1) C6H2N3O7- center dot C5H12NO2+, Mr = 346.26, P2(1)/c, a = 7.2356(6), b = 10.5765(9), c = 19.593(2) angstrom, 3 beta=95.101(6)degrees, V = 1493.5(2) angstrom(3), Z = 4, R-1 = 0.0414; (2) C6H2N3O7- center dot C6H8NO+, Mr = 38.24, P2(1)/n, a = 7.8713(5), b = 6.1979(7), c = 28.697(3) angstrom, beta = 90.028(7)degrees, V = 1400.0(2) angstrom(3), Z = 4, R-1 = 0.0416. The packing units in both compounds consist of hydrogen bonded cation-anion pairs. The (hyper)polarizabilities have been calculated for the crystallographic and optimized molecules, by AM1 and at the DFT/B3LYP(6-31G**) level.
Resumo:
This study analyzed mineral trioxide aggregate (MTA) as a root canal filling material for the immediate reimplantation of monkey teeth. Four adult capuchin monkeys Cebus apella were used, which had their maxillary and mandibular lateral incisors on both sides extracted and reimplanted after 15 min. During the extra-alveolar period, the teeth were kept in saline solution and after reimplantation retention was performed with a stainless steel wire and composite resin for 14 days. After 7 days, the reimplanted teeth were submitted to endodontic treatment with biomechanics up to file n. 30 and irrigation with a saturated solution of calcium hydroxide [Ca(OH)(2)], and then divided into two study groups: group I - root canal filled with a Ca(OH)(2) paste, and group II - root canal filled with MTA. Radiographic follow up was performed at 30, 60 and 90 days postoperatively, and after 180 days the animals were killed and specimens were processed for histomorphological analysis. The results revealed that most specimens of both groups presented organized periodontal ligament with no inflammation. The resorptions observed were surface resorptions and were repaired by cementum. Both MTA and Ca(OH)(2) were good root canal filling materials for immediately reimplanted teeth, providing good repair and also allowing biological sealing of some lateral canals. There was no significant difference between the study groups (alpha = 29.60%).
Resumo:
When cement hydrated compositions are analyzed by usual initial mass basis TG curves to calculate mass losses, the higher is the amount of additive added or is the combined water content, the higher is the cement 'dilution' in the initial mass of the sample. In such cases, smaller mass changes in the different mass loss steps are obtained, due to the actual smaller content of cement in the initial mass compositions. To have a same mass basis of comparison, and to avoid erroneous results of initial components content there from, thermal analysis data and curves have to be transformed on cement calcined basis, i.e. on the basis of cement oxides mass present in the calcined samples or on the sample cement initial mass basis.The paper shows and discusses the fundamentals of these bases of calculation, with examples on free and combined water analysis, on calcium sulfate hydration during false cement set and on quantitative evaluation and comparison of pozzolanic materials activity.
Resumo:
Aim To evaluate the reactivity of different endodontic materials and sealers with glucose and to asses the reliability of the glucose leakage model in measuring penetration of glucose through these materials.Methodology Ten uniform discs (radius 5 mm, thickness 2 mm) were made of each of the following materials: Portland cement, MTA (grey and white), sealer 26, calcium sulphate, calcium hydroxide [Ca(OH)(2)], AH26,Epiphany, Resilon, gutta-percha and dentine. After storing the discs for 1 week at 37 degrees C and humid conditions, they were immersed in 0.2 mg mL(-1) glucose solution in a test tube. The concentration of glucose was evaluated using an enzymatic reaction after 1 week. Statistical analysis was performed with the ANOVA and Dunnett tests at a significant level of P < 0.05.Results Portland cement, MTA, Ca(OH)(2) and sealer 26 reduced the concentration in the test tube of glucose significantly after 1 week (P < 0.05). Calcium sulphate reduced the concentration of glucose, but the difference in concentrations was not significant (P = 0.054).Conclusions Portland cement, MTA, Ca(OH)(2) and sealer 26 react with a 0.2 mg mL(-1) glucose solution. Therefore, these materials should not be evaluated for sealing ability with the glucose leakage model.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)