983 resultados para Marine algae -- Classification
Resumo:
BACKGROUND: Inherited ichthyoses belong to a large, clinically and etiologically heterogeneous group of mendelian disorders of cornification, typically involving the entire integument. Over the recent years, much progress has been made defining their molecular causes. However, there is no internationally accepted classification and terminology. OBJECTIVE: We sought to establish a consensus for the nomenclature and classification of inherited ichthyoses. METHODS: The classification project started at the First World Conference on Ichthyosis in 2007. A large international network of expert clinicians, skin pathologists, and geneticists entertained an interactive dialogue over 2 years, eventually leading to the First Ichthyosis Consensus Conference held in Sorèze, France, on January 23 and 24, 2009, where subcommittees on different issues proposed terminology that was debated until consensus was reached. RESULTS: It was agreed that currently the nosology should remain clinically based. "Syndromic" versus "nonsyndromic" forms provide a useful major subdivision. Several clinical terms and controversial disease names have been redefined: eg, the group caused by keratin mutations is referred to by the umbrella term, "keratinopathic ichthyosis"-under which are included epidermolytic ichthyosis, superficial epidermolytic ichthyosis, and ichthyosis Curth-Macklin. "Autosomal recessive congenital ichthyosis" is proposed as an umbrella term for the harlequin ichthyosis, lamellar ichthyosis, and the congenital ichthyosiform erythroderma group. LIMITATIONS: As more becomes known about these diseases in the future, modifications will be needed. CONCLUSION: We have achieved an international consensus for the classification of inherited ichthyosis that should be useful for all clinicians and can serve as reference point for future research.
Resumo:
The 2008 Data Fusion Contest organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee deals with the classification of high-resolution hyperspectral data from an urban area. Unlike in the previous issues of the contest, the goal was not only to identify the best algorithm but also to provide a collaborative effort: The decision fusion of the best individual algorithms was aiming at further improving the classification performances, and the best algorithms were ranked according to their relative contribution to the decision fusion. This paper presents the five awarded algorithms and the conclusions of the contest, stressing the importance of decision fusion, dimension reduction, and supervised classification methods, such as neural networks and support vector machines.
Resumo:
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.
Resumo:
Colorectal cancer is a heterogeneous disease that manifests through diverse clinical scenarios. During many years, our knowledge about the variability of colorectal tumors was limited to the histopathological analysis from which generic classifications associated with different clinical expectations are derived. However, currently we are beginning to understand that under the intense pathological and clinical variability of these tumors there underlies strong genetic and biological heterogeneity. Thus, with the increasing available information of inter-tumor and intra-tumor heterogeneity, the classical pathological approach is being displaced in favor of novel molecular classifications. In the present article, we summarize the most relevant proposals of molecular classifications obtained from the analysis of colorectal tumors using powerful high throughput techniques and devices. We also discuss the role that cancer systems biology may play in the integration and interpretation of the high amount of data generated and the challenges to be addressed in the future development of precision oncology. In addition, we review the current state of implementation of these novel tools in the pathological laboratory and in clinical practice.
Resumo:
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56- phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment.
Resumo:
We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahia de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydrauliz gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (similar to 500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (delta(2)H(water) and delta(18)O(water), delta(34)S(sulfate) , delta(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to similar to 1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH similar to 7, Eh similar to 100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(II) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These two Fe-rich plumes were pushed toward the shoreline where more oxidizing and higher pH conditions triggered the precipitation of Fe(HI)hydroxide coatings on silicates. These coatings acted as a filter for the arsenic, which naturally infiltrated with the river water (similar to 500 mu g/L As natural background) into the tailings deposit.
Resumo:
Petroleum hydrocarbons are common contaminants in marine and freshwater aquatic habitats, often occurring as a result of oil spillage. Rapid and reliable on-site tools for measuring the bioavailable hydrocarbon fractions, i.e., those that are most likely to cause toxic effects or are available for biodegradation, would assist in assessing potential ecological damage and following the progress of cleanup operations. Here we examined the suitability of a set of different rapid bioassays (2-3 h) using bacteria expressing the LuxAB luciferase to measure the presence of short-chain linear alkanes, monoaromatic and polyaromatic compounds, biphenyls, and DNA-damaging agents in seawater after a laboratory-scale oil spill. Five independent spills of 20 mL of NSO-1 crude oil with 2 L of seawater (North Sea or Mediterranean Sea) were carried out in 5 L glass flasks for periods of up to 10 days. Bioassays readily detected ephemeral concentrations of short-chain alkanes and BTEX (i.e., benzene, toluene, ethylbenzene, and xylenes) in the seawater within minutes to hours after the spill, increasing to a maximum of up to 80 muM within 6-24 h, after which they decreased to low or undetectable levels. The strong decrease in short-chain alkanes and BTEX may have been due to their volatilization or biodegradation, which was supported by changes in the microbial community composition. Two- and three-ring PAHs appeared in the seawater phase after 24 h with a concentration up to 1 muM naphthalene equivalents and remained above 0.5 muM for the duration of the experiment. DNA-damage-sensitive bioreporters did not produce any signal with the oil-spilled aqueous-phase samples, whereas bioassays for (hydroxy)biphenyls showed occasional responses. Chemical analysis for alkanes and PAHs in contaminated seawater samples supported the bioassay data, but did not show the typical ephemeral peaks observed with the bioassays. We conclude that bacterium-based bioassays can be a suitable alternative for rapid on-site quantitative measurement of hydrocarbons in seawater.
Resumo:
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment
Resumo:
Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.
Resumo:
The development, validation, comparison and evaluation of analytical methods for marine toxins rely on the availability of toxic material. Within the project JACUMAR PSP, our interest is mainly focused on autochthonous bivalve species with the toxic profile of Alexandrium minutum, since this is the principal species involved regionally in PSP outbreaks. Mussels and oysters were exposed during few days in the harbor of Vilanova i la Geltrú, to blooms reaching a maximum A. minutum concentration of 200,000 cells L-1 in 2008, and 40,000 and 800,000 cells L-1, in 2009. Mussels, oysters and clams were exposed to one bloom of 22,000 cells L-1 in the harbor of Cambrils in 2009. In all situations higher toxic levels analyzed by HPLC-FD with postcolumn oxidation were observed in mussels (i.e. 1,200-2,500 μg eq. STX kg-1) than in oysters (i.e. 60-800 μg eq. STX kg-1) exposed to the same bloom. Blooms with higher concentrations of A. minutum did not correspond to higher levels of PSP toxins in bivalves. These differences may be explained by differences in A. minutum population dynamics, toxin production or in the physiological state or behaviour of shellfish. These results confirm that mussels concentrate more PSP toxins from A. minutum than oysters and clams.