922 resultados para MULTIFUNCTIONAL VECTORS
Resumo:
Image and video analysis requires rich features that can characterize various aspects of visual information. These rich features are typically extracted from the pixel values of the images and videos, which require huge amount of computation and seldom useful for real-time analysis. On the contrary, the compressed domain analysis offers relevant information pertaining to the visual content in the form of transform coefficients, motion vectors, quantization steps, coded block patterns with minimal computational burden. The quantum of work done in compressed domain is relatively much less compared to pixel domain. This paper aims to survey various video analysis efforts published during the last decade across the spectrum of video compression standards. In this survey, we have included only the analysis part, excluding the processing aspect of compressed domain. This analysis spans through various computer vision applications such as moving object segmentation, human action recognition, indexing, retrieval, face detection, video classification and object tracking in compressed videos.
Resumo:
In this article, a Field Programmable Gate Array (FPGA)-based hardware accelerator for 3D electromagnetic extraction, using Method of Moments (MoM) is presented. As the number of nets or ports in a system increases, leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products presents a time bottleneck in a linear-complexity fast solver framework. In this work, an FPGA-based hardware implementation is proposed toward a two-level parallelization scheme: (i) matrix level parallelization for single RHS and (ii) pipelining for multiple-RHS. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple nets in a Ball Grid Array (BGA) package. The acceleration is shown to be linearly scalable with FPGA resources and speed-ups over 10x against equivalent software implementation on a 2.4GHz Intel Core i5 processor is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board with the implemented design operating at 200MHz clock frequency. (c) 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:776-783, 2016
Resumo:
A split-phase induction motor is fed from two three-phase voltage source inverters for speed control. This study analyses carrier-comparison based pulse width modulation (PWM) schemes for a split-phase motor drive, from a space-vector perspective. Sine-triangle PWM, one zero-sequence injection PWM where the same zero-sequence signal is used for both the inverters, and another zero-sequence injection PWM where different zero-sequence signals are employed for the two inverters are considered. The set of voltage vectors applied, the sequence in which the voltage vectors are applied, and the resulting current ripple vector are analysed for all the PWM methods. Besides all the PWM methods are compared in terms of dc bus utilisation. For the same three-phase sine reference, the PWM method with different zero-sequence signals for the two inverters is found to employ a set of vectors different from the other methods. Both analysis and experimental results show that this method results in lower total harmonic distortion and higher dc bus utilisation than the other two PWM methods.
Resumo:
A state-based peridynamic formulation for linear elastic shells is presented. The emphasis is on introducing, possibly for the first time, a general surface based peridynamic model to represent the deformation characteristics of structures that have one geometric dimension much smaller than the other two. A new notion of curved bonds is exploited to cater for force transfer between the peridynamic particles describing the shell. Starting with the three dimensional force and deformation states, appropriate surface based force, moment and several deformation states are arrived at. Upon application on the curved bonds, such states yield the necessary force and deformation vectors governing the motion of the shell. By incorporating a shear correction factor, the formulation also accommodates analysis of shells that have higher thickness. In order to attain this, a consistent second order approximation to the complementary energy density is considered and incorporated in peridynamics via constitutive correspondence. Unlike the uncoupled constitution for thin shells, a consequence of a first order approximation, constitutive relations for thick shells are fully coupled in that surface wryness influences the in-plane stress resultants and surface strain the moments. Our proposal on the peridynamic shell theory is numerically assessed against simulations on static deformation of spherical and cylindrical shells, that of flat plates and quasi-static fracture propagation in a cylindrical shell. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Acoustic feature based speech (syllable) rate estimation and syllable nuclei detection are important problems in automatic speech recognition (ASR), computer assisted language learning (CALL) and fluency analysis. A typical solution for both the problems consists of two stages. The first stage involves computing a short-time feature contour such that most of the peaks of the contour correspond to the syllabic nuclei. In the second stage, the peaks corresponding to the syllable nuclei are detected. In this work, instead of the peak detection, we perform a mode-shape classification, which is formulated as a supervised binary classification problem - mode-shapes representing the syllabic nuclei as one class and remaining as the other. We use the temporal correlation and selected sub-band correlation (TCSSBC) feature contour and the mode-shapes in the TCSSBC feature contour are converted into a set of feature vectors using an interpolation technique. A support vector machine classifier is used for the classification. Experiments are performed separately using Switchboard, TIMIT and CTIMIT corpora in a five-fold cross validation setup. The average correlation coefficients for the syllable rate estimation turn out to be 0.6761, 0.6928 and 0.3604 for three corpora respectively, which outperform those obtained by the best of the existing peak detection techniques. Similarly, the average F-scores (syllable level) for the syllable nuclei detection are 0.8917, 0.8200 and 0.7637 for three corpora respectively. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Crowd flow segmentation is an important step in many video surveillance tasks. In this work, we propose an algorithm for segmenting flows in H.264 compressed videos in a completely unsupervised manner. Our algorithm works on motion vectors which can be obtained by partially decoding the compressed video without extracting any additional features. Our approach is based on modelling the motion vector field as a Conditional Random Field (CRF) and obtaining oriented motion segments by finding the optimal labelling which minimises the global energy of CRF. These oriented motion segments are recursively merged based on gradient across their boundaries to obtain the final flow segments. This work in compressed domain can be easily extended to pixel domain by substituting motion vectors with motion based features like optical flow. The proposed algorithm is experimentally evaluated on a standard crowd flow dataset and its superior performance in both accuracy and computational time are demonstrated through quantitative results.
Resumo:
The concept of state vector stems from statistical physics, where it is usually used to describe activity patterns of a physical field in its manner of coarsegrain. In this paper, we propose an approach by which the state vector was applied to describe quantitatively the damage evolution of the brittle heterogeneous systems, and some interesting results are presented, i.e., prior to the macro-fracture of rock specimens and occurrence of a strong earthquake, evolutions of the four relevant scalars time series derived from the state vectors changed anomalously. As retrospective studies, some prominent large earthquakes occurred in the Chinese Mainland (e.g., the M 7.4 Haicheng earthquake on February 4, 1975, and the M 7.8 Tangshan earthquake on July 28, 1976, etc) were investigated. Results show considerable promise that the time-dependent state vectors could serve as a kind of precursor to predict earthquakes.
Resumo:
It is shown that for a particle with suitable angular moments in the screened Coulomb potential or isotropic harmonic potential, there still exist closed orbits rather than ellipse, characterized by the conserved aphelion and perihelion vectors, i.e. extended Runge-Lenz vector, which implies a higher dynamical symmetry than the geometrical symmetry O-3. The closeness of a planar orbit implies the radial and angular motional frequencies are commensurable.
Resumo:
This paper presents experimental results on heat transfer and pressure drop for a compact heat sink made of fully triangulated, lightweight (porosity∼0.938), aluminum lattice-frame materials (LFMs). Due to the inherent structural anisotropy of the LFMs, two mutually perpendicular orientations were selected for the measurements. Constant heat flux was applied to the heat sink under steady state conditions, and dissipated by forced air convection. The experimental data were compared with those predicted from an analytical model based on fin analogy. The experimental results revealed that pressure drop is strongly dependent upon the orientation of the structure, due mainly to the flow blockage effect. For heat transfer measurements, typical local temperature distributions on the substrate under constant heat flux conditions were captured with infrared camera. The thermal behavior of LFMs was found to follow closely that of cylinder banks, with early transition Reynolds number (based on strut diameter) equal to about 300. The Nusselt number prediction from the fin-analogy correlates well with experimental measurements, except at low Reynolds numbers where a slightly underestimation is observed. Comparisons with empty channels and commonly used heat exchanger media show that the present LFM heat sink can remove heat approximately seven times more efficient than an empty channel and as efficient as a bank of cylinders at the same porosity level. The aluminum LFMs are extremely stiff and strong, making them ideal candidates for multifunctional structures requiring both heat dissipation and mechanical load carrying capabilities. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a new method for local key and chord estimation from audio signals. This method relies primarily on principles from music theory, and does not require any training on a corpus of labelled audio files. A harmonic content of the musical piece is first extracted by computing a set of chroma vectors. A set of chord/key pairs is selected for every frame by correlation with fixed chord and key templates. An acyclic harmonic graph is constructed with these pairs as vertices, using a musical distance to weigh its edges. Finally, the sequences of chords and keys are obtained by finding the best path in the graph using dynamic programming. The proposed method allows a mutual chord and key estimation. It is evaluated on a corpus composed of Beatles songs for both the local key estimation and chord recognition tasks, as well as a larger corpus composed of songs taken from the Billboard dataset.
Resumo:
An optimal algorithm of manufacturing path planner for intelligent laser surface modification is presented. Elements included in the optimal objective have been analyzed. A 6-D manufacture trace that satisfies the requirements of special craft and 5-axis laser processing robot system has been generated from the path planner by method of parallel section in which combinations of modification spots size with curvature of processing surfaces and modification craft parameters are considered. Related experiments have been successfully carried out with the computer integrated multifunctional laser manufacturing system.
Resumo:
ADMB2R is a collection of AD Model Builder routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 ADMB2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the ADMB2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer ADMB2R to others in the hope that they will find it useful. (PDF contains 30 pages)
Resumo:
C2R is a collection of C routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 C2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the C2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer C2R to others in the hope that they will find it useful. (PDF contains 27 pages)
Resumo:
For2R is a collection of Fortran routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 For2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the For2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer For2R to others in the hope that they will find it useful. (PDF contains 31 pages)