832 resultados para MPIX (Electronic computer system).


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sound is potentially an effective way of analysing data and it is possible to simultaneously interpret layers of sounds and identify changes. Multiple attempts to use sound with scientific data have been made, with varying levels of success. On many occasions this was done without including the end user during the development. In this study a sonified model of the 8 planets of our solar system was built and tested using an end user approach. The sonification was created for the Esplora Planetarium, which is currently being constructed in Malta. The data requirements were gathered from a member of the planetarium staff, and 12 end users, as well as the planetarium representative tested the sonification. The results suggest that listeners were able to discern various planetary characteristics without requiring any additional information. Three out of eight sound design parameters did not represent characteristics successfully. These issues have been identified and further development will be conducted in order to improve the model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Embedded software systems in vehicles are of rapidly increasing commercial importance for the automotive industry. Current systems employ a static run-time environment; due to the difficulty and cost involved in the development of dynamic systems in a high-integrity embedded control context. A dynamic system, referring to the system configuration, would greatly increase the flexibility of the offered functionality and enable customised software configuration for individual vehicles, adding customer value through plug-and-play capability, and increased quality due to its inherent ability to adjust to changes in hardware and software. We envisage an automotive system containing a variety of components, from a multitude of organizations, not necessarily known at development time. The system dynamically adapts its configuration to suit the run-time system constraints. This paper presents our vision for future automotive control systems that will be regarded in an EU research project, referred to as DySCAS (Dynamically Self-Configuring Automotive Systems). We propose a self-configuring vehicular control system architecture, with capabilities that include automatic discovery and inclusion of new devices, self-optimisation to best-use the processing, storage and communication resources available, self-diagnostics and ultimately self-healing. Such an architecture has benefits extending to reduced development and maintenance costs, improved passenger safety and comfort, and flexible owner customisation. Specifically, this paper addresses the following issues: The state of the art of embedded software systems in vehicles, emphasising the current limitations arising from fixed run-time configurations; and the benefits and challenges of dynamic configuration, giving rise to opportunities for self-healing, self-optimisation, and the automatic inclusion of users’ Consumer Electronic (CE) devices. Our proposal for a dynamically reconfigurable automotive software system platform is outlined and a typical use-case is presented as an example to exemplify the benefits of the envisioned dynamic capabilities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At head of cover title: Generalized computer program.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To tackle the challenges at circuit level and system level VLSI and embedded system design, this dissertation proposes various novel algorithms to explore the efficient solutions. At the circuit level, a new reliability-driven minimum cost Steiner routing and layer assignment scheme is proposed, and the first transceiver insertion algorithmic framework for the optical interconnect is proposed. At the system level, a reliability-driven task scheduling scheme for multiprocessor real-time embedded systems, which optimizes system energy consumption under stochastic fault occurrences, is proposed. The embedded system design is also widely used in the smart home area for improving health, wellbeing and quality of life. The proposed scheduling scheme for multiprocessor embedded systems is hence extended to handle the energy consumption scheduling issues for smart homes. The extended scheme can arrange the household appliances for operation to minimize monetary expense of a customer based on the time-varying pricing model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The lack of analytical models that can accurately describe large-scale networked systems makes empirical experimentation indispensable for understanding complex behaviors. Research on network testbeds for testing network protocols and distributed services, including physical, emulated, and federated testbeds, has made steady progress. Although the success of these testbeds is undeniable, they fail to provide: 1) scalability, for handling large-scale networks with hundreds or thousands of hosts and routers organized in different scenarios, 2) flexibility, for testing new protocols or applications in diverse settings, and 3) inter-operability, for combining simulated and real network entities in experiments. This dissertation tackles these issues in three different dimensions. First, we present SVEET, a system that enables inter-operability between real and simulated hosts. In order to increase the scalability of networks under study, SVEET enables time-dilated synchronization between real hosts and the discrete-event simulator. Realistic TCP congestion control algorithms are implemented in the simulator to allow seamless interactions between real and simulated hosts. SVEET is validated via extensive experiments and its capabilities are assessed through case studies involving real applications. Second, we present PrimoGENI, a system that allows a distributed discrete-event simulator, running in real-time, to interact with real network entities in a federated environment. PrimoGENI greatly enhances the flexibility of network experiments, through which a great variety of network conditions can be reproduced to examine what-if questions. Furthermore, PrimoGENI performs resource management functions, on behalf of the user, for instantiating network experiments on shared infrastructures. Finally, to further increase the scalability of network testbeds to handle large-scale high-capacity networks, we present a novel symbiotic simulation approach. We present SymbioSim, a testbed for large-scale network experimentation where a high-performance simulation system closely cooperates with an emulation system in a mutually beneficial way. On the one hand, the simulation system benefits from incorporating the traffic metadata from real applications in the emulation system to reproduce the realistic traffic conditions. On the other hand, the emulation system benefits from receiving the continuous updates from the simulation system to calibrate the traffic between real applications. Specific techniques that support the symbiotic approach include: 1) a model downscaling scheme that can significantly reduce the complexity of the large-scale simulation model, resulting in an efficient emulation system for modulating the high-capacity network traffic between real applications; 2) a queuing network model for the downscaled emulation system to accurately represent the network effects of the simulated traffic; and 3) techniques for reducing the synchronization overhead between the simulation and emulation systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment (“relaxation” vs. “stress”) are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the “relaxation” vs. “stress” states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Today, modern System-on-a-Chip (SoC) systems have grown rapidly due to the increased processing power, while maintaining the size of the hardware circuit. The number of transistors on a chip continues to increase, but current SoC designs may not be able to exploit the potential performance, especially with energy consumption and chip area becoming two major concerns. Traditional SoC designs usually separate software and hardware. Thus, the process of improving the system performance is a complicated task for both software and hardware designers. The aim of this research is to develop hardware acceleration workflow for software applications. Thus, system performance can be improved with constraints of energy consumption and on-chip resource costs. The characteristics of software applications can be identified by using profiling tools. Hardware acceleration can have significant performance improvement for highly mathematical calculations or repeated functions. The performance of SoC systems can then be improved, if the hardware acceleration method is used to accelerate the element that incurs performance overheads. The concepts mentioned in this study can be easily applied to a variety of sophisticated software applications. The contributions of SoC-based hardware acceleration in the hardware-software co-design platform include the following: (1) Software profiling methods are applied to H.264 Coder-Decoder (CODEC) core. The hotspot function of aimed application is identified by using critical attributes such as cycles per loop, loop rounds, etc. (2) Hardware acceleration method based on Field-Programmable Gate Array (FPGA) is used to resolve system bottlenecks and improve system performance. The identified hotspot function is then converted to a hardware accelerator and mapped onto the hardware platform. Two types of hardware acceleration methods – central bus design and co-processor design, are implemented for comparison in the proposed architecture. (3) System specifications, such as performance, energy consumption, and resource costs, are measured and analyzed. The trade-off of these three factors is compared and balanced. Different hardware accelerators are implemented and evaluated based on system requirements. 4) The system verification platform is designed based on Integrated Circuit (IC) workflow. Hardware optimization techniques are used for higher performance and less resource costs. Experimental results show that the proposed hardware acceleration workflow for software applications is an efficient technique. The system can reach 2.8X performance improvements and save 31.84% energy consumption by applying the Bus-IP design. The Co-processor design can have 7.9X performance and save 75.85% energy consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper summarises the development of a machine-readable model series for explaining Gaudi's use of ruled surface geometry in the Sagrada Familia in Barcelona, Spain. The first part discusses the modeling methods underlying the columns of the cathedral and the techniques required to translate them into built structures. The second part discusses the design and development of a tangible machine-readable model to explain column-modeling methods interactively in educational contexts such as art exhibitions. It is designed to explain the principles underlying the column design by means of physical interaction without using mathematical terms or language.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than a century ago in their definitive work “The Right to Privacy” Samuel D. Warren and Louis D. Brandeis highlighted the challenges posed to individual privacy by advancing technology. Today’s workplace is characterised by its reliance on computer technology, particularly the use of email and the Internet to perform critical business functions. Increasingly these and other workplace activities are the focus of monitoring by employers. There is little formal regulation of electronic monitoring in Australian or United States workplaces. Without reasonable limits or controls, this has the potential to adversely affect employees’ privacy rights. Australia has a history of legislating to protect privacy rights, whereas the United States has relied on a combination of constitutional guarantees, federal and state statutes, and the common law. This thesis examines a number of existing and proposed statutory and other workplace privacy laws in Australia and the United States. The analysis demonstrates that existing measures fail to adequately regulate monitoring or provide employees with suitable remedies where unjustifiable intrusions occur. The thesis ultimately supports the view that enacting uniform legislation at the national level provides a more effective and comprehensive solution for both employers and employees. Chapter One provides a general introduction and briefly discusses issues relevant to electronic monitoring in the workplace. Chapter Two contains an overview of privacy law as it relates to electronic monitoring in Australian and United States workplaces. In Chapter Three there is an examination of the complaint process and remedies available to a hypothetical employee (Mary) who is concerned about protecting her privacy rights at work. Chapter Four provides an analysis of the major themes emerging from the research, and also discusses the draft national uniform legislation. Chapter Five details the proposed legislation in the form of the Workplace Surveillance and Monitoring Act, and Chapter Six contains the conclusion.