850 resultados para MAGHEMITE NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing production and use of engineered nanoparticles it is crucial that their interaction with biological systems is understood. Due to the small size of nanoparticles, their identification and localization within single cells is extremely challenging. Therefore, various cutting-edge techniques are required to detect and to quantify metals, metal oxides, magnetic, fluorescent, as well as electron-dense nanoparticles. Several techniques will be discussed in detail, such as inductively coupled plasma atomic emission spectroscopy, flow cytometry, laser scanning microscopy combined with digital image restoration, as well as quantitative analysis by means of stereology on transmission electron microscopy images. An overview will be given regarding the advantages of those visualization/quantification systems, including a thorough discussion about limitations and pitfalls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-amplifying replicon RNA (RepRNA) possesses high potential for increasing antigen load within dendritic cells (DCs). The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA)) interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs), there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements-slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antisense oligonucleotides (ASOs) have the potential of revolutionizing medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated with nanoparticles to enhance their stability and cellular uptake; however, one of the biggest challenges is the poor understanding of their uptake mechanism, which is needed for designing better ASOs with high activity and low toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (P-PMO), 2?Omethyl phosphorothioate (2?OMe) and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Deuchenne muscular dystrophy (DMD). We show that P-PMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. P-PMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations P-PMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in-vitro. In-vivo, the activity of P-PMO was significantly decreased in SCARA1 knock-out mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2?OMe as shown by competitive inhibition and co-localization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that P-PMO and tcDNA have higher binding profiles to the receptor compared to 2?OMe. These results demonstrate receptor-mediated uptake for a range of ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Laser tissue fusion has a large potential for minimal invasive tissue fusion in different surgical specialties. We have developed a combined endovascular minimal invasive surgical technique to fuse blood vessels for bypass surgery. However, the main difficulty was to achieve reproducible results as the main tensile strength is a result of protein denaturation. We therefore aimed to develop a quantitative, reproducible tissue fusion using polycapsulated silica core nanoparticles containing indocyanine green (Si@PCL/ICG). Methods: In a first step we developed mesoporous indocyanine green (ICG) containing nanoparticles and assessed their heating profile. Furthermore the stability to light exposure and ICG degradation was measured. In a second phase Si@PCL/ICG nanoparticles for embedding into a biodegradeable implant was developed and characterized using differential scanning calomeritry technique (DSC). Results: ICG containing mesoporous silica nanoparticles showed a sufficient increase in temperature up to 80°C suitable for laser tissue fusion. However, long-term stability of ICG mesoporous nanoparticles is lost after 7 days of light exposure. In contrast Si@PCL/ICG nanoparticles demonstrated a strong heating capacity as well as a good DSC profile for laser tissue fusion and long-term stability of 3 weeks. Furthermore Si@PCL/ICG nanoparticles can be directly dispersed in spin-coated polycaprolactone polymer. Conclusion: Si@PCL/ICG nanoparticles have good long-term stability and polymer embedding properties suitable for laser tissue fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among all classes of nanomaterials, silver nanoparticles (AgNPs) have potentially an important ecotoxicological impact, especially in freshwater environments. Fish are particularly susceptible to the toxic effects of silver ions and, with knowledge gaps regarding the contribution of dissolution and unique particle effects to AgNP toxicity, they represent a group of vulnerable organisms. Using cell lines (RTL-W1, RTH-149, RTG-2) and primary hepatocytes of rainbow trout (Oncorhynchus mykiss) as in vitro test systems, we assessed the cytotoxicity of the representative AgNP, NM-300K, and AgNO3 as an Ag+ ion source. Lack of AgNP interference with the cytotoxicity assays (AlamarBlue, CFDA-AM, NRU assay) and their simultaneous application point to the compatibility and usefulness of such a battery of assays. The RTH-149 and RTL-W1 liver cell lines exhibited similar sensitivity as primary hepatocytes towards AgNP toxicity. Leibovitz's L-15 culture medium composition (high amino acid content) had an important influence on the behaviour and toxicity of AgNPs towards the RTL-W1 cell line. The obtained results demonstrate that, with careful consideration, such an in vitro approach can provide valuable toxicological data to be used in an integrated testing strategy for NM-300K risk assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt doped magnetite (CoxFe3-xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by SQUID, x-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to <4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nano-scale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled-up successfully from lab-scale to pilot plant-scale production, whilst maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 L bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 hours. This procedure was capable of producing up to 120 g biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 L, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kg to tonne quantities.