956 resultados para Métodología estadística
Resumo:
We compute the density-fluctuation spectrum of spherical 4HeN shells adsorbed on the outer surface of Cn fullerenes. The excitation spectrum is obtained within the random-phase approximation, with particle-hole elementary excitations and effective interaction extracted from a density-functional description of the shell structure. The presence of one or two solid helium layers adjacent to the adsorbing fullerene is phenomenologically accounted for. We illustrate our results for a selection of numbers of adsorbed atoms on C20, C60, and C120. The hydrodynamical model that has proven successful to describe helium excitations in the bulk and in restricted geometries permits to perform a rather exhaustive analysis of various fluid spherical systems, namely, spheres, cavities, free bubbles, and bound shells of variable size.
Resumo:
The edge excitations and related topological orders of correlated states of a fast rotating Bose gas are studied. Using exact diagonalization of small systems, we compute the energies and number of edge excitations, as well as the boson occupancy near the edge for various states. The chiral Luttinger-liquid theory of Wen is found to be a good description of the edges of the bosonic Laughlin and other states identified as members of the principal Jain sequence for bosons. However, we find that in a harmonic trap the edge of the state identified as the Moore-Read (Pfaffian) state shows a number of anomalies. An experimental way of detecting these correlated states is also discussed.
Resumo:
We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local mean-field theory at finite temperature (but neglecting thermally activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model when controlling either the external magnetic field H or the extensive magnetization M. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the H-driven and M-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the H-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the M-driven loop is reentrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.
Resumo:
We report on measurements of the adiabatic second-order elastic constants of the off-stoichiometric Ni54Mn23Al23 single-crystalline Heusler alloy. The variation in the temperature dependence of the elastic constants has been investigated across the magnetic transition and over a broad temperature range. Anomalies in the temperature behavior of the elastic constants have been found in the vicinity of the magnetic phase transition. Measurements under applied magnetic field, both isothermal and variable temperature, show that the value of the elastic constants depends on magnetic order, thus giving evidence for magnetoelastic coupling in this alloy system.
Resumo:
A model for the study of hysteresis and avalanches in a first-order phase transition from a single variant phase to a multivariant phase is presented. The model is based on a modification of the random-field Potts model with metastable dynamics by adding a dipolar interaction term truncated at nearest neighbors. We focus our study on hysteresis loop properties, on the three-dimensional microstructure formation, and on avalanche statistics.
Resumo:
We have investigated the fragmentation of collective modes in doped 4He drops in the framework of a finite-range density-functional theory, as well as the delocalization of the impurity inside the cluster. Our results indicate that the impurity is gradually delocalized inside the drop as the size of the latter increases. As an example, results are shown in the case of Xe-4HeN systems up to N=112.
Resumo:
We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.
Resumo:
We study the static properties of the Little model with asymmetric couplings. We show that the thermodynamics of this model coincides with that of the Sherrington-Kirkpatrick model, and we compute the main finite-size corrections to the difference of the free energy between these two models and to some clarifying order parameters. Our results agree with numerical simulations. Numerical results are presented for the symmetric Little model, which show that the same conclusions are also valid in this case.
Resumo:
We study the relaxational dynamics of the one-spin facilitated Ising model introduced by Fredrickson and Andersen. We show the existence of a critical time which separates an initial regime in which the relaxation is exponentially fast and aging is absent from a regime in which relaxation becomes slow and aging effects are present. The presence of this fast exponential process and its associated critical time is in agreement with some recent experimental results on fragile glasses.
Resumo:
The nonequilibrium phase transitions occurring in a fast-ionic-conductor model and in a reaction-diffusion Ising model are studied by Monte Carlo finite-size scaling to reveal nonclassical critical behavior; our results are compared with those in related models.
Resumo:
During plastic deformation of crystalline materials, the collective dynamics of interacting dislocations gives rise to various patterning phenomena. A crucial and still open question is whether the long range dislocation-dislocation interactions which do not have an intrinsic range can lead to spatial patterns which may exhibit well-defined characteristic scales. It is demonstrated for a general model of two-dimensional dislocation systems that spontaneously emerging dislocation pair correlations introduce a length scale which is proportional to the mean dislocation spacing. General properties of the pair correlation functions are derived, and explicit calculations are performed for a simple special case, viz pair correlations in single-glide dislocation dynamics. It is shown that in this case the dislocation system exhibits a patterning instability leading to the formation of walls normal to the glide plane. The results are discussed in terms of their general implications for dislocation patterning.