977 resultados para Luminance-modulated
Resumo:
Growth hormone secretion is classically modulated by two hypothalamic hormones, growth hormone-releasing hormone and somatostatin. A third pathway was proposed in the last decade, which involves the growth hormone secretagogues. Ghrelin is a novel acylated peptide which is produced mainly by the stomach. It is also synthesized in the hypothalamus and is present in several other tissues. This endogenous growth hormone secretagogue was discovered by reverse pharmacology when a group of synthetic growth hormone-releasing compounds was initially produced, leading to the isolation of an orphan receptor and, finally, to its endogenous ligand. Ghrelin binds to an active receptor to increase growth hormone release and food intake. It is still not known how hypothalamic and circulating ghrelin is involved in the control of growth hormone release. Endogenous ghrelin might act to amplify the basic pattern of growth hormone secretion, optimizing somatotroph responsiveness to growth hormone-releasing hormone. It may activate multiple interdependent intracellular pathways at the somatotroph, involving protein kinase C, protein kinase A and extracellular calcium systems. However, since ghrelin has a greater ability to release growth hormone in vivo, its main site of action is the hypothalamus. In the current review we summarize the available data on the: a) discovery of this peptide, b) mechanisms of action of growth hormone secretagogues and ghrelin and possible physiological role on growth hormone modulation, and c) regulation of growth hormone release in man after intravenous administration of these peptides.
Resumo:
Insulin receptor substrate-1 (IRS-1) is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I) receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH) to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI) 21d = 51.02 ± 6.02 ng/mL, N = 12 rats), when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group) and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group). Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an important event associated with the increased rate of cell mitosis promoted by TSH and indicates that insulin and IGF-I are important co-mitogenic factors in vivo, possibly acting through the activation of IRS-1.
Resumo:
The effect of different contextual stimuli on different ethanol-induced internal states was investigated during the time course of both the hypothermic effect of the drug and of drug tolerance. Minimitters were surgically implanted in 16 Wistar rats to assess changes in their body temperature under the effect of ethanol. Rat groups were submitted to ethanol or saline trials every other day. The animals were divided into two groups, one receiving a constant dose (CD) of ethanol injected intraperitoneally, and the other receiving increasing doses (ID) during the 10 training sessions. During the ethanol training sessions, conditioned stimuli A (tone) and B (buzzer) were presented at "state +" (35 min after drug injection) and "state -" (170 min after drug injection), respectively. Conditioned stimuli C (bip) and D (white noise) were presented at moments equivalent to stimuli A and B, respectively, but during the saline training sessions. All stimuli lasted 15 min. The CD group, but not the ID group, developed tolerance to the hypothermic effect of ethanol. Stimulus A (associated with drug "state +") induced hyperthermia with saline injection in the ID group. Stimulus B (associated with drug "state -") reduced ethanol tolerance in the CD group and modulated the hypothermic effect of the drug in the ID group. These results indicate that contextual stimuli acquire modulatory conditioned properties that are associated with the time course of both the action of the drug and the development of drug tolerance.
Resumo:
Estrogen has multiple effects on lipid and lipoprotein metabolism. We investigated the association between the four common single nucleotide polymorphisms in the estrogen receptor 1 (ESR1) gene locus, -1989T>G, +261G>C, IVS1-397T>C and IVS1-351A>G, and lipid and lipoprotein levels in southern Brazilians. The sample consisted in 150 men and 187 premenopausal women. The women were considered premenopausal if they had regular menstrual bleeding within the previous 3 months and were 18-50 years of age. Exclusion criteria were pregnancy, secondary hyperlipidemia due to renal, hepatic or thyroid disease, and diabetes. Smoking status was self-reported; subjects were classified as never smoked and current smokers. DNA was amplified by PCR and was subsequently digested with the appropriate restriction enzymes. Statistical analysis was carried out for men and women separately. In the study population, major allele frequencies were _1989*T (0.83), +261*G (0.96), IVS1-397*T (0.58), and IVS1-351*A (0.65). Multiple linear regression analyses indicated that an interaction between +261G>C polymorphism and smoking was a significant factor affecting high-density lipoprotein cholesterol (HDL-C) levels (P = 0.028) in women. Nonsmoking women with genotype G/C of +261G>C polymorphism had mean HDL-C levels higher than those with G/G genotype (1.40 ± 0.33 vs 1.22 ± 0.26 mmol/L; P = 0.033). No significant associations with lipid and lipoprotein levels in women and men were detected for other polymorphisms. In conclusion, the +261G>C polymorphism might influence lipoprotein and lipid levels in premenopausal women, but these effects seem to be modulated by smoking, whereas in men ESR1 polymorphisms were not associated with high lipoprotein levels.
Resumo:
Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.
Resumo:
Nitric oxide (NO) influences renal blood flow mainly as a result of neuronal nitric oxide synthase (nNOS). Nevertheless, it is unclear how nNOS expression is modulated by endogenous angiotensin II, an inhibitor of NO function. We tested the hypothesis that the angiotensin II AT1 receptor and oxidative stress mediated by NADPH oxidase contribute to the modulation of renal nNOS expression in two-kidney, one-clip (2K1C) hypertensive rats. Experiments were performed on male Wistar rats (150 to 170 g body weight) divided into 2K1C (N = 19) and sham-operated (N = 19) groups. nNOS expression in kidneys of 2K1C hypertensive rats (N = 9) was compared by Western blotting to that of 2K1C rats treated with low doses of the AT1 antagonist losartan (10 mg·kg-1·day-1; N = 5) or the superoxide scavenger tempol (0.2 mmol·kg-1·day-1; N = 5), which still remain hypertensive. After 28 days, nNOS expression was significantly increased by 1.7-fold in the clipped kidneys of 2K1C rats and by 3-fold in the non-clipped kidneys of 2K1C rats compared with sham rats, but was normalized by losartan. With tempol treatment, nNOS expression increased 2-fold in the clipped kidneys and 1.4-fold in the non-clipped kidneys compared with sham rats. The changes in nNOS expression were not followed by changes in the enzyme activity, as measured indirectly by the cGMP method. In conclusion, AT1 receptors and oxidative stress seem to be primary stimuli for increased nNOS expression, but this up-regulation does not result in higher enzyme activity.
Resumo:
Growing consistent evidence indicates that hypofunction of N-methyl-D-aspartate (NMDA) transmission plays a pivotal role in the neuropathophysiology of schizophrenia. Hence, drugs which modulate NMDA neurotransmission are promising approaches to the treatment of schizophrenia. The aim of this article is to review clinical trials with novel compounds acting on the NMDA receptor (NMDA-R). This review also includes a discussion and translation of neuroscience into schizophrenia therapeutics. Although the precise mechanism of action of minocycline in the brain remains unclear, there is evidence that it blocks the neurotoxicity of NMDA antagonists and may exert a differential effect on NMDA signaling pathways. We, therefore, hypothesize that the effects of minocycline on the brain may be partially modulated by the NMDA-R or related mechanisms. Thus, we have included a review of minocycline neuroscience. The search was performed in the PubMed, Web of Science, SciELO, and Lilacs databases. The results of glycine and D-cycloserine trials were conflicting regarding effectiveness on the negative and cognitive symptoms of schizophrenia. D-serine and D-alanine showed a potential effect on negative symptoms and on cognitive deficits. Sarcosine data indicated a considerable improvement as adjunctive therapy. Finally, minocycline add-on treatment appears to be effective on a broad range of psychopathology in patients with schizophrenia. The differential modulation of NMDA-R neurosystems, in particular synaptic versus extrasynaptic NMDA-R activation and specific subtypes of NMDA-R, may be the key mediators of neurogenesis and neuroprotection. Thus, psychotropics modulating NMDA-R neurotransmission may represent future monotherapy or add-on treatment strategies in the treatment of schizophrenia.
Resumo:
Epithelial intercellular cohesion, mainly mediated by E-cadherin (CDH1) expression and function, may be deregulated during cancer cell invasion of adjacent tissues and lymphatic and vascular channels. CDH1 expression is down-modulated in invasive lobular breast carcinomas but its regulation in invasive ductal carcinomas (IDC) is less clear. CDH1 expression is repressed by transcription factors such as Snail (SNAI1) and its product is degraded after Hakai ubiquitination. We compared CDH1, SNAI1 and HAKAI mRNA expression in IDC and paired adjacent normal breast tissue and evaluated its relation with node metastasis and circulating tumor cells. Matched tumor/peritumoral and blood samples were collected from 30 patients with early IDC. Epithelial cells from each compartment (tumor/peritumoral) were recovered by an immunomagnetic method and gene expression was determined by real time RT-PCR. There were no differences in CDH1, SNAI1 and HAKAI mRNA expression between tumor and corresponding peritumoral samples and no differential tumoral gene expression according to nodal involvement. Another 30 patients with a long-term follow-up (at least 5 years) and a differential prognosis (good or poor, as defined by breast cancer death) had E-cadherin and Snail protein detected by immunohistochemistry in tumor samples. In this group, E-cadherin-positive expression, but not Snail, may be associated with a better prognosis. This is the first report simultaneously analyzing CDH1, SNAI1 and HAKAI mRNA expression in matched tumor and peritumoral samples from patients with IDC. However, no clear pattern of their expression could distinguish the invasive tumor compartment from its adjacent normal tissue.
Effect of carotid and aortic baroreceptors on cardiopulmonary reflex: the role of autonomic function
Resumo:
We determined the sympathetic and parasympathetic control of heart rate (HR) and the sensitivity of the cardiopulmonary receptors after selective carotid and aortic denervation. We also investigated the participation of the autonomic nervous system in the Bezold-Jarish reflex after selective removal of aortic and carotid baroreceptors. Male Wistar rats (220-270 g) were divided into three groups: control (CG, N = 8), aortic denervation (AG, N = 5) and carotid denervation (CAG, N = 9). AG animals presented increased arterial pressure (12%) and HR (11%) compared with CG, while CAG animals presented a reduction in arterial pressure (16%) and unchanged HR compared with CG. The sequential blockade of autonomic effects by atropine and propranolol indicated a reduction in vagal function in CAG (a 50 and 62% reduction in vagal effect and tonus, respectively) while AG showed an increase of more than 100% in sympathetic control of HR. The Bezold-Jarish reflex was evaluated using serotonin, which induced increased bradycardia and hypotension in AG and CAG, suggesting that the sensitivity of the cardiopulmonary reflex is augmented after selective denervation. Atropine administration abolished the bradycardic responses induced by serotonin in all groups; however, the hypotensive response was still increased in AG. Although the responses after atropine were lower than the responses before the drug, indicating a reduction in vagal outflow after selective denervation, our data suggest that both denervation procedures are associated with an increase in sympathetic modulation of the vessels, indicating that the sensitivity of the cardiopulmonary receptors was modulated by baroreceptor fibers.
Resumo:
Endothelins (ETs) and sarafotoxins (SRTXs) belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L):10-h darkness (10D) was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM) and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM) increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC) and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.
Resumo:
The combined influence of tempo and mode on emotional responses to music was studied by crossing 7 changes in mode with 3 changes in tempo. Twenty-four musicians aged 19 to 25 years (12 males and 12 females) and 24 nonmusicians aged 17 to 25 years (12 males and 12 females) were required to perform two tasks: 1) listening to different musical excerpts, and 2) associating an emotion to them such as happiness, serenity, fear, anger, or sadness. ANOVA showed that increasing the tempo strongly affected the arousal (F(2,116) = 268.62, mean square error (MSE) = 0.6676, P < 0.001) and, to a lesser extent, the valence of emotional responses (F(6,348) = 8.71, MSE = 0.6196, P < 0.001). Changes in modes modulated the affective valence of the perceived emotions (F(6,348) = 4.24, MSE = 0.6764, P < 0.001). Some interactive effects were found between tempo and mode (F (1,58) = 115.6, MSE = 0.6428, P < 0.001), but, in most cases, the two parameters had additive effects. This finding demonstrates that small changes in the pitch structures of modes modulate the emotions associated with the pieces, confirming the cognitive foundation of emotional responses to music.
Resumo:
Using cDNA microarray analysis, we previously identified a set of differentially expressed genes in primary breast tumors based on the status of estrogen and progesterone receptors. In the present study, we performed an integrated computer-assisted and manual search of potential estrogen response element (ERE) binding sites in the promoter region of these genes to characterize their potential to be regulated by estrogen receptors (ER). Publicly available databases were used to annotate the position of these genes in the genome and to extract a 5’flanking region 2 kb upstream to 2 kb downstream of the transcription start site for transcription binding site analysis. The search for EREs and other binding sites was performed using several publicly available programs. Overall, approximately 40% of the genes analyzed were potentially able to be regulated by estrogen via ER. In addition, 17% of these genes are located very close to other genes organized in a head-to-head orientation with less than 1.0 kb between their transcript units, sharing a bidirectional promoter, and could be classified as bidirectional gene pairs. Using quantitative real-time PCR, we further investigated the effects of 17β-estradiol and antiestrogens on the expression of the bidirectional gene pairs in MCF-7 breast cancer cells. Our results showed that some of these gene pairs, such as TXNDC9/EIF5B, GALNS/TRAPPC2L, and SERINC1/PKIB, are modulated by 17β-estradiol via ER in MCF-7 breast cancer cells. Here, we also characterize the promoter region of potential ER-regulated genes and provide new information on the transcriptional regulation of bidirectional gene pairs.
Resumo:
This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols.
Resumo:
The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female reproduction
Resumo:
The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.