813 resultados para Lorentz, Espais de


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il problema di Maxwell canonico si suddivide nel problema di Maxwell omogeneo e nel problema di Maxwell non omogeneo, o della radiazione, a seconda che siano presenti le correnti impresse. Il problema della radiazione ci mostra come si può generare un’onda elettromagnetica. In questo elaborato si risolverà il problema di Maxwell non omogeneo utilizzando un metodo relativamente nuovo che sfrutta la funzione di Green e la funzione generalizzata tridimensionale di dirac. Tramite quest'ultima, vedremo come sarà possibile riscrivere l’elemento infinitesimo di corrente impressa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi di laurea si colloca all'interno del progetto Erasmus + IDENTITIES, il cui obiettivo è sviluppare materiali didattici interdisciplinari per la formazione iniziale degli insegnanti. Nello specifico, si dà seguito ad una ricerca condotta da Lorenzo Miani, finalizzata a mettere in evidenza come la Teoria della Relatività Speciale (STR) sia storicamente nata da una speciale interazione tra matematica e fisica. Tale co-evoluzione è stata cercata, e messa in evidenza, attraverso l’analisi dei quattro articoli fondativi della STR scritti da Lorentz (1904), Poincaré (1906), Einstein (1905) e Minkowski (1908). Per l’analisi di questi articoli abbiamo utilizzato la metafora del “confine”, esposta nella metateoria di Akkerman e Bakker (2011), riferendosi al confine tra Matematica e Fisica. È stato sviluppato uno strumento operativo di analisi di articoli originali per estrarne il rapporto tra le due discipline. Un’analisi di questo tipo può portare un contributo considerevole al Justification Problem, intercettando la possibilità di indagare sull’identità della Matematica, intesa come disciplina. Questo tipo di analisi ha permesso di comprendere gli “stili al confine” di ogni autore, e la natura delle Trasformazioni di Lorentz in quanto oggetto di confine. È inoltre illustrata la progettazione di un’attività per la formazione iniziale degli insegnanti. Questa si configura come un tutorial per lavori di gruppo, ed è stata sperimentata nel corso di Didattica della Fisica dell’Università di Bologna, tenuto dalla Professoressa Olivia Levrini. Grazie all’attività, è stato possibile riflettere sulle identità disciplinari e sull’importanza di fare “esperienze di confine” per superare stereotipi. Lo strumento elaborato nella tesi si apre a sviluppi futuri, dal momento che si presta ad essere utilizzato per l’analisi di una grande varietà di testi e per la costruzione di “boundary zone”, sempre più auspicate e incentivate nei report europei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nel 1932 l'ingegnere e fisico Karl Jansky progettò un’antenna in grado di rilevare onde radio alla frequenza di 20.5 MHz, con la quale notò un'emissione diffusa che proveniva da ogni zona del cielo e si intensificava verso la costellazione del Sagittario. Oggi sappiamo che quella osservata da Jansky è radiazione di sincrotrone. Il meccanismo di emissione di sincrotrone affonda le sue radici nelle leggi dell'elettromagnetismo: quando una particella carica attraversa una regione di spazio in cui è presente un campo magnetico, viene accelerata dalla forza di Lorentz e comincia ad irraggiare in virtù dell'accelerazione subita, come previsto dalla formula di Larmor. A seconda che il moto avvenga a velocità non relativistiche, relativistiche o ultrarelativistiche, l’emissione è chiamata rispettivamente radiazione di ciclotrone, ciclotrone relativistico e sincrotrone. L’emissione diffusa osservata da Jansky, allora, può essere interpretata come radiazione di sincrotrone prodotta dall’interazione delle particelle ultrarelativistiche dei raggi cosmici con il campo magnetico che permea la Via Lattea, mentre l’emissione più intensa nel Sagittario è oggi identificata con la radiosorgente Sagittarius A*, localizzata in corrispondenza del buco nero supermassiccio al centro della Galassia. L’emissione di sincrotrone rappresenta uno dei processi di emissione più rilevanti in Astrofisica ed è in grado di spiegare l’origine di gran parte della radiazione osservata nella banda radio, tanto di quella diffusa quanto di quella generata da radiosorgenti individuali, come radiogalassie e resti di supernova. Le proprietà e la peculiare distribuzione spettrale della radiazione di sincrotrone consentono di ricavare una serie di informazioni sulla sorgente da cui è stata emessa. Per via dello stretto legame con il campo magnetico, inoltre, la radiazione di questo tipo è uno strumento d’indagine fondamentale per la ricostruzione del campo magnetico galattico ed extragalattico.