828 resultados para Linear regression analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

An extensive data set of total arsenic analysis for 901 polished (white) grain samples, originating from 10 countries from 4 continents, was compiled. The samples represented the baseline (i.e., not specifically collected from arsenic contaminated areas), and all were for market sale in major conurbations. Median total arsenic contents of rice varied 7-fold, with Egypt (0.04 mg/kg) and India (0.07 mg/kg) having the lowest arsenic content while the U.S. (0.25 mg/kg) and France (0.28 mg/kg) had the highest content. Global distribution of total arsenic in rice was modeled by weighting each country’s arsenic distribution by that country’s contribution to global production. A subset of 63 samples from Bangladesh, China, India, Italy, and the U.S. was analyzed for arsenic species. The relationship between inorganic arsenic content versus total arsenic content significantly differed among countries, with Bangladesh and India having the steepest slope in linear regression, and the U.S. having the shallowest slope. Using country-specific rice consumption data, daily intake of inorganic arsenic was estimated and the associated internal cancer risk was calculated using the U.S. Environmental Protection Agency (EPA) cancer slope. Median excess internal cancer risks posed by inorganic arsenic ranged 30-fold for the 5 countries examined, being 0.7 per 10,000 for Italians to 22 per 10,000 for Bangladeshis, when a 60 kg person was considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This chapter applies rigorous statistical analysis to existing datasets of medieval exchange rates quoted in merchants’ letters sent from Barcelona, Bruges and Venice between 1380 and 1310, which survive in the archive of Francesco di Marco Datini of Prato. First, it tests the exchange rates for stationarity. Second, it uses regression analysis to examine the seasonality of exchange rates at the three financial centres and compares them against contemporary descriptions by the merchant Giovanni di Antonio da Uzzano. Third, it tests for structural breaks in the exchange rate series.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study aims to contribute to an understanding of the complexity of lobbying activities within the accounting standard-setting process in the UK. The paper reports detailed content analysis of submission letters to four related exposure drafts. These preceded two accounting standards that set out the concept of control used to determine the scope of consolidation in the UK, except for reporting under international standards. Regulation on the concept of control provides rich patterns of lobbying behaviour due to its controversial nature and its significance to financial reporting. Our examination is conducted by dividing lobbyists into two categories, corporate and non-corporate, which are hypothesised (and demonstrated) to lobby differently. In order to test the significance of these differences we apply ANOVA techniques and univariate regression analysis. Corporate respondents are found to devote more attention to issues of specific applicability of the concept of control, whereas non-corporate respondents tend to devote more attention to issues of general applicability of this concept. A strong association between the issues raised by corporate respondents and their line of business is revealed. Both categories of lobbyists are found to advance conceptually-based arguments more often than economic consequences-based or combined arguments. However, when economic consequences-based arguments are used, they come exclusively from the corporate category of respondents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Forecasting wind power is an important part of a successful integration of wind power into the power grid. Forecasts with lead times longer than 6 h are generally made by using statistical methods to post-process forecasts from numerical weather prediction systems. Two major problems that complicate this approach are the non-linear relationship between wind speed and power production and the limited range of power production between zero and nominal power of the turbine. In practice, these problems are often tackled by using non-linear non-parametric regression models. However, such an approach ignores valuable and readily available information: the power curve of the turbine's manufacturer. Much of the non-linearity can be directly accounted for by transforming the observed power production into wind speed via the inverse power curve so that simpler linear regression models can be used. Furthermore, the fact that the transformed power production has a limited range can be taken care of by employing censored regression models. In this study, we evaluate quantile forecasts from a range of methods: (i) using parametric and non-parametric models, (ii) with and without the proposed inverse power curve transformation and (iii) with and without censoring. The results show that with our inverse (power-to-wind) transformation, simpler linear regression models with censoring perform equally or better than non-linear models with or without the frequently used wind-to-power transformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups RB above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number RA using a variety of regression techniques. It is found that a very high correlation between RA and RB (rAB > 0.98) does not prevent large errors in the intercalibration (for example sunspot maximum values can be over 30 % too large even for such levels of rAB). In generating the backbone sunspot number (RBB), Svalgaard and Schatten (2015, this issue) force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (“Q  Q”) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to identify and quantify the influence of F (inbreeding coefficient) on weaning weight (WW), weight gain from weaning to 18 months of age (WG345), finishing visual score (precocity) at 18 months of age, muscling visual score at 18 months of age (MUS), hip height (HH), scrotal circumference at 18 months of age (SC), heifer probability of pregnancy at 14 months of age (PP14), and stayability (STAY) in Brazilian Nellore cattle. The complete pedigree included 417,552 animals born between 1984 and 2007 on 12 farms located in the states of Mato Grosso do Sul, Sao Paulo and Bahia. Following the observation of a statistically significant effect (P<0.05) of the covariates individual inbreeding coefficient (F) and maternal inbreeding coefficient, regression analysis of each trait, adjusted for all other effects, was performed as a function of the linear and quadratic effect of F and maternal F (when significant). Inbreeding negatively affected all traits studied (P<0.05), except for muscling. A quadratic effect of individual F on WW, WG345, HH and PP14, and a quadratic effect of maternal F on WG345 and HH were observed. Levels of inbreeding higher than 7-11% affected negatively growth and reproductive performance of Nellore cattle. Therefore, inbreeding should be avoided, except for purposes of genetic breeding whose main objective is the fixation of certain alleles in the population. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study determined the sensory shelf life of a commercial brand of chocolate and carrot cupcakes, aiming at increasing the current 120 days of shelf life to 180. Appearance, texture, flavor and overall quality of cakes stored at six different storage times were evaluated by 102 consumers. The data were analyzed by analysis of variance and linear regression. For both flavors, the texture presented a greater loss in acceptance during the storage period, showing an acceptance mean close to indifference on the hedonic scale at 120 days. Nevertheless, appearance, flavor and overall quality stayed acceptable up to 150 days. The end of shelf life was estimated at about 161 days for chocolate cakes and 150 days for carrot cakes. This study showed that the current 120 days of shelf life can be extended to 150 days for carrot cake and to 160 days for chocolate cake. However, the 180 days of shelf life desired by the company were not achieved. PRACTICAL APPLICATIONS This research shows the adequacy of using sensory acceptance tests to determine the shelf life of two food products (chocolate and carrot cupcakes). This practical application is useful because the precise determination of the shelf life of a food product is of vital importance for its commercial success. The maximum storage time should always be evaluated in the development or reformulation of new products, changes in packing or storage conditions. Once the physical-chemical and microbiological stability of a product is guaranteed, sensorial changes that could affect consumer acceptance will determine the end of the shelf life of a food product. Thus, the use of sensitive and reliable methods to estimate the sensory shelf life of a product is very important. Findings show the importance of determining the shelf life of each product separately and to avoid using the shelf time estimated for a specific product on other, similar products.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationships between the four radiant fluxes are analyzed based on a 4 year data archive of hourly and daily global ultraviolet (I(UV)), photosynthetically active-PAR (I(PAR)), near infrared (I(NIR)) and broadband global solar radiation (I(G)) collected at Botucatu, Brazil. These data are used to establish both the fractions of spectral components to global solar radiation and the proposed linear regression models. Verification results indicated that the proposed regression models predict accurately the spectral radiant fluxes at least for the Brazilian environment. Finally, results obtained in this analysis agreed well with most published results in the literature. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this analysis, using available hourly and daily radiometric data performed at Botucatu, Brazil, several empirical models relating ultraviolet (UV), photosynthetically active (PAR) and near infrared (NIR) solar global components with solar global radiation (G) are established. These models are developed and discussed through clearness index K(T) (ratio of the global-to-extraterrestrial solar radiation). Results obtained reveal that the proposed empirical models predict hourly and daily values accurately. Finally. the overall analysis carried Out demonstrates that the sky conditions are more important in developing correlation models between the UV component and the global solar radiation. The linear regression models derived to estimate PAR and NIR components may be obtained without sky condition considerations within a maximum variation of 8%. In the case of UV, not taking into consideration the sky condition may cause a discrepancy of up to 18% for hourly values and 15% for daily values. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Precipitation and temperature climate indices are calculated using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and validated against observational data from some stations over Brazil and other data sources. The spatial patterns of the climate indices trends are analyzed for the period 1961-1990 over South America. In addition, the correlation and linear regression coefficients for some specific stations were also obtained in order to compare with the reanalysis data. In general, the results suggest that NCEP/NCAR reanalysis can provide useful information about minimum temperature and consecutive dry days indices at individual grid cells in Brazil. However, some regional differences in the climate indices trends are observed when different data sets are compared. For instance, the NCEP/NCAR reanalysis shows a reversal signal for all rainfall annual indices and the cold night index over Argentina. Despite these differences, maps of the trends for most of the annual climate indices obtained from the NCEP/NCAR reanalysis and BRANT analysis are generally in good agreement with other available data sources and previous findings in the literature for large areas of southern South America. The pattern of trends for the precipitation annual indices over the 30 years analyzed indicates a change to wetter conditions over southern and southeastern parts of Brazil, Paraguay, Uruguay, central and northern Argentina, and parts of Chile and a decrease over southwestern South America. All over South America, the climate indices related to the minimum temperature (warm or cold nights) have clearly shown a warming tendency; however, no consistent changes in maximum temperature extremes (warm and cold days) have been observed. Therefore, one must be careful before suggesting an), trends for warm or cold days.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents a novel approach in order to increase the recognition power of Multiscale Fractal Dimension (MFD) techniques, when applied to image classification. The proposal uses Functional Data Analysis (FDA) with the aim of enhancing the MFD technique precision achieving a more representative descriptors vector, capable of recognizing and characterizing more precisely objects in an image. FDA is applied to signatures extracted by using the Bouligand-Minkowsky MFD technique in the generation of a descriptors vector from them. For the evaluation of the obtained improvement, an experiment using two datasets of objects was carried out. A dataset was used of characters shapes (26 characters of the Latin alphabet) carrying different levels of controlled noise and a dataset of fish images contours. A comparison with the use of the well-known methods of Fourier and wavelets descriptors was performed with the aim of verifying the performance of FDA method. The descriptor vectors were submitted to Linear Discriminant Analysis (LDA) classification method and we compared the correctness rate in the classification process among the descriptors methods. The results demonstrate that FDA overcomes the literature methods (Fourier and wavelets) in the processing of information extracted from the MFD signature. In this way, the proposed method can be considered as an interesting choice for pattern recognition and image classification using fractal analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Local influence diagnostics based on estimating equations as the role of a gradient vector derived from any fit function are developed for repeated measures regression analysis. Our proposal generalizes tools used in other studies (Cook, 1986: Cadigan and Farrell, 2002), considering herein local influence diagnostics for a statistical model where estimation involves an estimating equation in which all observations are not necessarily independent of each other. Moreover, the measures of local influence are illustrated with some simulated data sets to assess influential observations. Applications using real data are presented. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider consider the problem of dichotomizing a continuous covariate when performing a regression analysis based on a generalized estimation approach. The problem involves estimation of the cutpoint for the covariate and testing the hypothesis that the binary covariate constructed from the continuous covariate has a significant impact on the outcome. Due to the multiple testing used to find the optimal cutpoint, we need to make an adjustment to the usual significance test to preserve the type-I error rates. We illustrate the techniques on one data set of patients given unrelated hematopoietic stem cell transplantation. Here the question is whether the CD34 cell dose given to patient affects the outcome of the transplant and what is the smallest cell dose which is needed for good outcomes. (C) 2010 Elsevier BM. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we show the results of a comparison simulation study for three classification techniques: Multinomial Logistic Regression (MLR), No Metric Discriminant Analysis (NDA) and Linear Discriminant Analysis (LDA). The measure used to compare the performance of the three techniques was the Error Classification Rate (ECR). We found that MLR and LDA techniques have similar performance and that they are better than DNA when the population multivariate distribution is Normal or Logit-Normal. For the case of log-normal and Sinh(-1)-normal multivariate distributions we found that MLR had the better performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper derives the second-order biases Of maximum likelihood estimates from a multivariate normal model where the mean vector and the covariance matrix have parameters in common. We show that the second order bias can always be obtained by means of ordinary weighted least-squares regressions. We conduct simulation studies which indicate that the bias correction scheme yields nearly unbiased estimators. (C) 2009 Elsevier B.V. All rights reserved.