989 resultados para Lima-bean pod borer
Resumo:
Inclui notas bibliográficas.
Resumo:
Inclui notas bibliográficas.
Resumo:
Inclui bibliografia.
Resumo:
Inclui bibliografia.
Resumo:
Inclui bibliografia.
Resumo:
Inclui notas bibliográficas.
Resumo:
In a recent article, Hunter uses the late George Varley and George Gradwell’s long-term data on the winter moth (Operophtera brumata) and green tortrix (Tortrix viridana) populations to propose a method of quantifying the relative importance of top-down effects (because of natural enemies) and bottom-up effects (because of resource competition) in influencing population dynamics. We believe this approach is deeply flawed. Using Varley and Gradwell’s winter moth study, we show that the problems with Hunter’s analysis lie in his misinterpretation of the population dynamics and his inappropriate use of statistical techniques. We also emphasize the importance of distinguishing clearly between two quite different things: firstly, top-down and bottom-up regulation of populations and secondly, the much simpler task of categorizing factors affecting changes in population density as either top-down or bottom-up processes.
Resumo:
Noninvasive, ion-selective vibrating microelectrodes were used to measure the kinetics of H+, Ca2+, K+, and Cl− fluxes and the changes in their concentrations caused by illumination near the mesophyll and attached epidermis of bean (Vicia faba L.). These flux measurements were related to light-induced changes in the plasma membrane potential. The influx of Ca2+ was the main depolarizing agent in electrical responses to light in the mesophyll. Changes in the net fluxes of H+, K+, and Cl− occurred only after a significant delay of about 2 min, whereas light-stimulated influx of Ca2+ began within the time resolution of our measurements (5 s). In the absence of H+ flux, light caused an initial quick rise of external pH near the mesophyll and epidermal tissues. In the mesophyll this fast alkalinization was followed by slower, oscillatory pH changes (5–15 min); in the epidermis the external pH increased steadily and reached a plateau 3 min later. We explain the initial alkalinization of the medium as a result of CO2 uptake by photosynthesizing tissue, whereas activation of the plasma membrane H+ pump occurred 1.5 to 2 min later. The epidermal layer seems to be a substantial barrier for ion fluxes but not for CO2 diffusion into the leaf.
Resumo:
Eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzaldehyde) is a toxin produced by Eutypa lata, the causal agent of eutypa dieback in the grapevine (Vitis vinifera). Eutypine is enzymatically converted by numerous plant tissues into eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl alcohol), a metabolite that is nontoxic to grapevine. We report a four-step procedure for the purification to apparent electrophoretic homogeneity of a eutypine-reducing enzyme (ERE) from etiolated mung bean (Vigna radiata) hypocotyls. The purified protein is a monomer of 36 kD, uses NADPH as a cofactor, and exhibits a Km value of 6.3 μm for eutypine and a high affinity for 3- and 4-nitro-benzaldehyde. The enzyme failed to catalyze the reverse reaction using eutypinol as a substrate. ERE detoxifies eutypine efficiently over a pH range from 6.2 to 7.5. These data strongly suggest that ERE is an aldehyde reductase that could probably be classified into the aldo-keto reductase superfamily. We discuss the possible role of this enzyme in eutypine detoxification.
Resumo:
Regulation by abscisic acid (ABA) and Ca2+ of broad bean (Vicia faba) abaxial and adaxial guard cell movements and inward K+ currents were compared. One millimolar Ca2+ in the bathing medium inhibited abaxial stomatal opening by 60% but only inhibited adaxial stomatal opening by 15%. The addition of 1 μm ABA in the bathing medium resulted in 80% inhibition of abaxial but only 45% inhibition of adaxial stomatal opening. Similarly, ABA and Ca2+ each stimulated greater abaxial stomatal closure than adaxial stomatal closure. Whole-cell patch-clamp results showed that the inward K+ currents of abaxial guard cells were inhibited by 60% (−180 mV) in the presence of 1.5 μm Ca2+ in the cytoplasm, whereas the inward K+ currents of adaxial guard cells were not affected at all by the same treatment. Although 1 μm ABA in the cytoplasm inhibited the inward K+ currents to a similar extent for both abaxial and adaxial guard cells, the former were more sensitive to ABA applied externally. These results suggest that the abaxial stomata are more sensitive to Ca2+ and ABA than adaxial stomata in regard to stomatal opening and closing processes and that the regulation of the inward K+ currents by ABA may not proceed via a Ca2+-signaling pathway in adaxial guard cells. Therefore, there may be different pathways for ABA- and Ca2+-mediated signal transduction in abaxial and adaxial guard cells.
Resumo:
The effect of light intensity on antioxidants, antioxidant enzymes, and chlorophyll content was studied in common bean (Phaseolus vulgaris L.) exposed to excess Mn. Leaves of bean genotypes contrasting in Mn tolerance were exposed to two different light intensities and to excess Mn; light was controlled by shading a leaflet with filter paper. After 5 d of Mn treatment ascorbate was depleted by 45% in leaves of the Mn-sensitive genotype ZPV-292 and by 20% in the Mn-tolerant genotype CALIMA. Nonprotein sulfhydryl groups and glutathione reductase were not affected by Mn or light treatment. Ten days of Mn-toxicity stress increased leaf ascorbate peroxidase activity of cv ZPV-292 by 78% in low light and by 235% in high light, and superoxide dismutase activity followed a similar trend. Increases of ascorbate peroxidase and superoxide dismutase activity observed in cv CALIMA were lower than those observed in the susceptible cv ZPV-292. The cv CALIMA had less ascorbate oxidation under excess Mn-toxicity stress. Depletion of ascorbate occurred before the onset of chlorosis in Mn-stressed plants, especially in cv ZPV-292. Lipid peroxidation was not detected in floating leaf discs of mature leaves exposed to excess Mn. Our results suggest that Mn toxicity may be mediated by oxidative stress, and that the tolerant genotype may maintain higher ascorbate levels under stress than the sensitive genotype.
Resumo:
Cultured cells of rose (Rosa damascena) treated with an elicitor derived from Phytophthora spp. and suspension-cultured cells of French bean (Phaseolus vulgaris) treated with an elicitor derived from the cell walls of Colletotrichum lindemuthianum both produced H2O2. It has been hypothesized that in rose cells H2O2 is produced by a plasma membrane NAD(P)H oxidase (superoxide synthase), whereas in bean cells H2O2 is derived directly from cell wall peroxidases following extracellular alkalinization and the appearance of a reductant. In the rose/Phytophthora spp. system treated with N,N-diethyldithiocarbamate, superoxide was detected by a N,N′-dimethyl-9,9′-biacridium dinitrate-dependent chemiluminescence; in contrast, in the bean/C. lindemuthianum system, no superoxide was detected, with or without N,N-diethyldithiocarbamate. When rose cells were washed free of medium (containing cell wall peroxidase) and then treated with Phytophthora spp. elicitor, they accumulated a higher maximum concentration of H2O2 than when treated without the washing procedure. In contrast, a washing treatment reduced the H2O2 accumulated by French bean cells treated with C. lindemuthianum elicitor. Rose cells produced reductant capable of stimulating horseradish (Armoracia lapathifolia) peroxidase to form H2O2 but did not have a peroxidase capable of forming H2O2 in the presence of reductant. Rose and French bean cells thus appear to be responding by different mechanisms to generate the oxidative burst.
Resumo:
Biotrophic plant pathogenic fungi differentiate specialized infection structures within the living cells of their host plants. These haustoria have been linked to nutrient uptake ever since their discovery. We have for the first time to our knowledge shown that the flow of sugars from the host Vicia faba to the rust fungus Uromyces fabae seems to occur largely through the haustorial complex. One of the most abundantly expressed genes in rust haustoria, the expression of which is negligible in other fungal structures, codes for a hexose transporter. Functional expression of the gene termed HXT1 in Saccharomyces cerevisiae and Xenopus laevis oocytes assigned a substrate specificity for d-glucose and d-fructose and indicated a proton symport mechanism. Abs against HXT1p exclusively labeled haustoria in immunofluorescence microscopy and the haustorial plasma membrane in electron microscopy. These results suggest that the fungus concentrates this transporter in haustoria to take advantage of a specialized compartment of the haustorial complex. The extrahaustorial matrix, delimited by the plasma membranes of both host and parasite, constitutes a newly formed apoplastic compartment with qualities distinct from those of the bulk apoplast. This organization might facilitate the competition of the parasite with natural sink organs of the host.