938 resultados para Layered Silicates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grouping and coordination tactics for ground attack missions by a heterogeneous mix of reconnaissance, enemy suppression, and attack unmanned aerial vehicles (UAVs) is presented. Dubins' paths are used to determine the optimal number of attack UAVs and their positional and heading freedoms, as functions of weapon seeker range and field of view. A generic battlefield scenario with layered defense is created and the tactics are evaluated on a Group Flyer simulation platform for both nominal and off-nominal conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layered LiNi0.8Co0.2O2 crystallizing in R (3) over barm space group is synthesized by decomposing the constituent metal-nitrate precursors. Oxidizing nature of metal nitrates stabilizes nickel in +3 oxidation state, enabling a high degree of cation ordering in the layered LiNi0.8Co0.2O2. The powder sample characterized by XRD Rietveld refinement reveals <2% Li-Ni site exchange in the layers. Scanning electron microscopic studies on the as-synthesized LiNi0.8Co0.2O2 sample reflect well defined particles of cubic morphology with particle size ranging between 200 and 250 nm. Cyclic voltammograms suggest that LiNi0.8Co0.2O2 undergoes phase transformation on first charge with resultant phase being completely reversible in subsequent cycles. The first-charge-cycle phase transition is further supported by impedance spectroscopy that shows substantial reduction in resistance during initial de-intercalation. Galvanostatic charge-discharge cycles reflect a first-discharge capacity of 184 mAh g(-1) which is stabilized at 170 mAh g(-1) over 50 cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene's nano-dimensional nature and excellent electron transfer properties underlie its electrocatalytic behavior towards certain substances. In this light, we have used graphene in the electrochemical detection of bisphenol A. Graphene sheets were produced via soft chemistry route involving graphite oxidation and chemical reduction. X-ray diffraction, Fourier transform infra-red (FT-IR) and Raman spectroscopy were used for the characterization of the as-synthesized graphene. Graphene exhibited amorphous structure in comparison with pristine graphite from XRD spectra. FTIR showed that graphene exhibits OH and COOH groups due to incomplete reduction. Raman spectroscopy revealed that multi-layered graphene was produced due to low intensity of the 2D-peak. Glassy carbon electrode was modified with graphene by a simple drop and dry method. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. The prepared graphene- modified glassy carbon electrode exhibited more facile electron kinetics and enhanced current of about 75% when compared to the unmodified glassy carbon electrode. The modified electrode was used for the detection of bisphenol A. Under the optimum conditions, the oxidation peak current of bisphenol A varied linearly with concentration over a wide range of 5 x 10(-8) mol L-1 to 1 x 10(-6) mol L-1 and the detection limit of this method was as low as 4.689 x 10(-8) M. This method was also employed to determine bisphenol A in a real sample

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to be tested for a broader range of climatic conditions and crop types, to assess its potential for spatial applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-layered materials have been made from Cu-Fe with approximately equal volume fractions using the Accumulated Roll Bonding (ARB) technique with less than 1 μm thickness of the individual layers. The so-obtained multi-layers have been subjected to deformation by cold rolling to 25, 50, 75, 87 and 93% reduction in thickness. A detailed characterization has been carried out using X-ray diffraction (line profile analysis and texture measurement) and electron (scanning and transmission) microscopy. It has been found that Fe layers are disintegrated whereas Cu retains its continuity within a layer. Microstructural Characterization from X-Ray Line profile Analysis (XRDLPA) through Variance Method reveals that large amount of strain is initially carried by Cu layers during deformation. In the Cu-Fe layer, the texture is comparatively weaker in Cu layer and strong in Fe layers. Brass Component increases up to 75% reduction and then decreases, while the ratio of Cu/S and Bs/S remains almost constant through out the deformation. After 50% reduction, dynamic recovery is predominant as indicated by the increase in the amount of low angle grain boundaries and decrease in dislocation density. The presence of R component indicates continuous dynamic recovery and recrystallization (CDRR) at the advanced stage of deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline powders of Ba1-xCaxBi4Ti4O15 (where x = 0, 0.25, 0.50, 0.75 and 1) were prepared via the conventional solid-state reaction route. X-ray diffraction (XRD) and Raman scattering techniques have been employed to probe into the structural changes on changing x. XRD analyses confirmed the formation of monophasic bismuth layered structure of all the above compositions with an increase in orthorhombic distortion with increase in x. Raman spectra revealed a redshift in A(1g) peak and an increase in the B-2g/B-3g splitting with increasing Ca content. The average grain size was found to increase with increasing x. The temperature of the maximum dielectric constant (T-m) increased linearly with increasing Ca-content whereas the diffuseness of the phase transition was found to decrease with the end member CaBi4Ti4O15 showing a frequency independent sharp phase transition around 1048 K. Ca doping resulted in a decrease in the remnant polarization and an increase in the coercive field. Ba0.75Ca0.25Bi4Ti4O15 ceramics showed an enhanced piezoelectric coefficient d(33) of 15 pC N-1 at room temperature. Low values of dielectric losses and tunability of temperature coefficient of dielectric constant (tau(epsilon)) in the present solid-solution suggest that these compounds can be of potential use in microwave dielectrics at high temperatures. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, Na0.33V2O5 center dot 1.5H(2)O nanorings/nanorods and Na0.33V2O5 center dot 1.5H(2)O/reduced graphene oxide (RGO) composites have been prepared through a facile hydrothermal route in acidic medium at 200 degrees C for 2 days. The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, UV-Visible spectroscopy, Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and electrochemical discharge-charge cycling in lithium ion battery. XRD pattern exhibits the layered structure of Na0.33V2O5 center dot 1.5H(2)O and the composite shows the presence of RGO at 2 theta = 25.8 degrees. FTIR spectrum shows that the band at 760 cm(-1) could be assigned to a V-OH2 stretching mode due to coordinated water. Raman spectrum shows that the band at 264 cm(-1) is due to the presence of water molecules between the layers. FESEM/TEM micrographs reveal that the products consist of nanorings of inner diameter 5 mu m and thickness of the ring is found to be 200-300 nm. Addition of exfoliated graphene oxide (EGO) destroys the formation of rings. The reduction of EGO sheets into RGO is also evidenced by the red shift of the absorbance peak from 228 nm to 264 nm. In this composite Na0.33V2O5 center dot 1.5H(2)O nanorods may adhere to the surface of RGO and/or embedded in the RGO nanosheets. As a result, an effective three-dimensional conducting network was formed by bridging RGO nanosheets, which can facilitate electron transport effectively and thus improve the kinetics and rate performance of Na0.33V2O5 center dot 1.5H(2)O nanorings/nanorods. The Na0.33V2O5 center dot 1.5H(2)O/RGO composites exhibited a discharge capacity of 340 mAh g(-1) at a current density of 0.1 mA g(-1) and also an improved cyclic stability. RGO plays a `flexible confinement' function to enwrap Na0.33V2O5 center dot 1.5H(2)O nanorods, which can compensate for the volume change and prevent the detachment and agglomeration of pulverized Na0.33V2O5 center dot 1.5H(2)O, thus extending the cycling life of the electrode. A probable reaction mechanism for the formation of Na0.33V2O5 center dot 1.5H(2)O nanorings is also discussed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eclogites and associated high-pressure (HP) rocks in collisional and accretionary orogenic belts preserve a record of subduction and exhumation, and provide a key constraint on the tectonic evolution of the continents. Most eclogites that formed at high pressures but low temperatures at > 10-11 kbar and 450-650 degrees C can be interpreted as a result of subduction of cold oceanic lithosphere. A new class of high-temperature (HT) eclogites that formed above 900 degrees C and at 14 to 30 kbar occurs in the deep continental crust, but their geodynamic significance and processes of formation are poorly understood. Here we show that Neoarchaean mafic-ultramafic complexes in the central granulite facies region of the Lewisian in NW Scotland contain HP/HT garnet-bearing granulites (retrogressed eclogites), gabbros, Iherzolites, and websterites, and that the HP granulites have garnets that contain inclusions of omphacite. From thermodynamic modeling and compositional isopleths we calculate that peak eclogite-facies metamorphism took place at 24-22 kbar and 1060-1040 degrees C. The geochemical signature of one (G-21) of the samples shows a strong depletion of Eu indicating magma fractionation at a crustal level. The Sm-Nd isochron ages of HP phases record different cooling ages of ca. 2480 and 2330 Ma. We suggest that the layered mafic-ultramafic complexes, which may have formed in an oceanic environment, were subducted to eclogite depths, and exhumed as HP garnet-bearing orogenic peridotites. The layered complexes were engulfed by widespread orthogneisses of tonalite-trondhjemite-granodiorite (TTG) composition with granulite facies assemblages. We propose two possible tectonic models: (1) the fact that the relicts of eclogitic complexes are so widespread in the Scourian can be taken as evidence that a >90 km x 40 km-size slab of continental crust containing mafic-ultramafic complexes was subducted to at least 70 km depth in the late Archaean. During exhumation the gneiss protoliths were retrogressed to granulite facies assemblages, but the mafic-ultramafic rocks resisted retrogression. (2) The layered complexes of mafic and ultramafic rocks were subducted to eclogite-facies depths and during exhumation under crustal conditions they were intruded by the orthogneiss protoliths (TTG) that were metamorphosed in the granulite facies. Apart from poorly defined UHP metamorphic rocks in Norway, the retrogressed eclogites in the central granulite/retrogressed eclogite facies Lewisian region, NW Scotland have the highest crustal pressures so far reported for Archaean rocks, and demonstrate that lithospheric subduction was transporting crustal rocks to HP depths in the Neoarchaean. (C) 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Neoarchean layered anorthositic complex at Sittampundi in southern India is known for its chromitite layers that are mostly associated with anorthosite (An(90-100)). The chromitites contain FeAl-rich chromites concentrated in layers between amphibole-rich layers with a dominant mineralogy of amphibole-spinel-plagiocase+/-sapphirine. The chromite-rich layers contain only amphibole and plagioclase. Mineral compositions illustrated by X-ray composition maps and profiles show subtle chemical differences. The chrome spinels are of refractory grade with Cr2O3 and Al2O3 contents varying between 34-40 wt.% and 23-28 wt.%. The chromite compositions are noticeably different from those in layered igneous intrusions of the Bushveld-Stillwater type. The existence of original highly calcic plagioclase, FeAl-rich chromite, and magmatic amphibole is consistent with derivation from a parental magma of hydrous tholeiitic composition that was most likely generated in a supra-subduction zone arc setting. In terms of mineralogy and field relations, the Sittampundi chromitites are remarkably similar to anorthosite-hosted chromitites in the Neoarchean Fiskensset anorthositic complex, Greenland. We propose that the Sittampundi chromitites formed by partial melting of unusually aluminous harzburgite in a hydrated mantle wedge above a subduction zone. This melting process produced hydrous, aluminous basalt, which fractionated at depth to give rise to a variety of high-alumina basalt compositions from which the anorthositic complex with its cumulate chromite-rich and amphibole-rich layers formed within the magma chamber of a supra-subduction zone arc. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The configuration of hemoglobin in solution and confined inside silica nanotubes has been studied using synchrotron small angle X-ray scattering and electrochemical activity. Confinement inside submicron tubes of silica aid in preventing protein aggregation, which is vividly observed for unconfined protein in solution. The radius of gyration (R-g) and size polydispersity (p) of confined hemoglobin was found to be lower than that in solution. This was also recently demonstrated in case of confined hemoglobin inside layered polymer capsules. The confined hemoglobin displayed a higher thermal stability with Rg and p showing negligible changes in the temperature range 25-75 degrees C. The differences in configuration between the confined and unconfined protein were reflected in their electrochemical activity. Reversible electrochemical response (from cyclic voltammograms) obtained in case of the confined hemoglobin, in contrary to the observance of only a cathodic response for the unconfined protein, gave direct indication of the differences between the residences of the electroactive heme center in a different orientation compared to that in solution state. The confined Hb showed loss of reversibility only at higher temperatures. The electron transfer coefficient (alpha) and electron transfer rate constant (k(s)) were also different, providing additional evidence regarding structural differences between the unconfined and confined states of hemoglobin. Thus, absence of any adverse effects due to confinement of proteins inside the inorganic matrices such as silica nanotubes opens up new prospects for utilizing inorganic matrices as protein ``encapsulators'', as well as sensors at varying temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sub-solidus phase relations in the ternary systems CaO-RuO2-SiO2 and CaO-RuO2-V2O5 have been refined using thermodynamic data on calcium ruthenates, silicates and vanadates. Tie lines are established by considering Gibbs energy change for exchange reactions. Quaternary oxides have not been detected in these systems. Because of the relatively large entropy associated with phase transition of Ca2SiO4 from olivine to alpha' structure at 1120 K, reversal of one tie line is seen in the system CaO-RuO2-SiO2 between 950 and 1230 K. There is no change in sub-solidus phase relation as a function of temperature in the system CaO-RuO2-V2O5. Since vanadium can exist in several lower oxidation states, the computed sub-solidus phase relations are valid only at high oxygen partial pressures. There is fair agreement between the computed phase diagram and the limited experimental information available for CaO-deficient compositions in the literature. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of the flow of a granular material down an inclined plane starting from rest is studied as a function of the base roughness. In the simulations, the particles are rough frictional spheres interacting via the Hertz contact law. The rough base is made of a random configuration of fixed spheres with diameter different from the flowing particles, and the base roughness is decreased by decreasing the diameter of the base particles. The transition from an ordered to a disordered flowing state at a critical value of the base particle diameter, first reported by Kumaran and Maheshwari Phys. Fluids 24, 053302 (2012)] for particles with the linear contact model, is observed for the Hertzian contact model as well. The flow development for the ordered and disordered flows is very different. During the development of the disordered flow for the rougher base, there is shearing throughout the height. During the development of the ordered flow for the smoother base, there is a shear layer at the bottom and a plug region with no internal shearing above. In the shear layer, the particles are layered and hexagonally ordered in the plane parallel to the base, and the velocity profile is well approximated by Bagnold law. The flow develops in two phases. In the first phase, the thickness of the shear layer and the maximum velocity increase linearly in time till the shear front reaches the top. In the second phase, after the shear layer encompasses the entire flow, there is a much slower increase in the maximum velocity until the steady state is reached. (C) 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geotextiles and geogrids have been in use for several decades in variety of geo-structure applications including foundation of embankments, retaining walls, pavements. Geocells is one such variant in geosynthetic reinforcement of recent years, which provides a three dimensional confinement to the infill material. Although extensive research has been carried on geocell reinforced sand, clay and layered soil subgrades, limited research has been reported on the aggregates/ballast reinforced with geocells. This paper presents the behavior of a railway sleeper subjected to monotonic loading on geocell reinforced aggregates, of size ranging from 20 to 75 mm, overlying soft clay subgrades. Series of tests were conducted in a steel test tank of dimensions 700 mm x 300 mm x 700 mm. In addition to the laboratory model tests, numerical simulations were performed using a finite difference code to predict the behavior of geocell reinforced ballast. The results from numerical simulations were compared with the experimental data. The numerical and experimental results manifested the importance that the geocell reinforcement has a significant effect on the ballast behaviour. The results depicted that the stiffness of underlying soft clay subgrade has a significant influence on the behavior of the geocell-aggregate composite material in redistributing the loading system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the synthesis, crystal structure, magnetic and electrochemical characterization of new rock salt-related oxides of formula, Li3M2RuO6 (M=Co, Ni). The M=Co oxide adopts the LiCoO2 (R-3m) structure, where sheets of LiO6 and (Co-2/Ru)O-6 octahedra are alternately stacked along the c-direction. The M=Ni oxide also adopts a similar layered structure related to Li2TiO3, where partial mixing of Li and Ni/Ru atoms lowers the symmetry to monoclinic (C2/c). Magnetic susceptibility measurements reveal that in Li3Co2RuO6, the oxidation states of transition metal ions are Co3+ (S=0), Co2+ (S=1/2) and Ru4+ (S=1), all of them in low-spin configuration and at 10 K, the material orders antiferromagnetically. Analogous Li3Ni2RuO6 presents a ferrimagnetic behavior with a Curie temperature of 100 K. The differences in the magnetic behavior have been explained in terms of differences in the crystal structure. Electrochemical studies correlate well with both magnetic properties and crystal structure. Li-transition metal intermixing may be at the origin of the more impeded oxidation of Li3Ni2RuO6 when compared to Li3CO2RuO6. Interestingly high first charge capacities (between ca. 160 and 180 mAh g(-1)) corresponding to ca. 2/3 of theoretical capacity are reached albeit, in both cases, capacity retention and cyclability are not satisfactory enough to consider these materials as alternatives to LiCoO2. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although weak interactions, such as C-H center dot center dot center dot O and pi-stacking, are generally considered to be insignificant, it is their reorganization that holds the key for many a solid-state phenomenon, such as phase transitions, plastic deformation, elastic flexibility, and mechanochromic luminescence in solid-state fluorophores. Despite this, the role of weak interactions in these dynamic phenomena is poorly understood. In this study, we investigate two co-crystal polymorphs of caffeine:4-chloro-3-nitrobenzoic acid, which have close structural similarity (2D layered structures), but surprisingly show distinct mechanical behavior. Form I is brittle, but shows shear-induced phase instability and, upon grinding, converts to Form II, which is soft and plastically shearable. This observation is in contrast to those reported in earlier studies on aspirin, wherein the metastable drug forms are softer and convert to stable and harder forms upon stressing To establish a molecular level understanding, have investigated the two co-crystal polymorphs I and II by single crystal X-ray diffraction, nanoindentation to quantify mechanical properties, and theoretical calculations. The lower hardness (from nanoindentation) and smooth potential surfaces (from theoretical studies) for shearing of layers in Form II allowed us to rationalize the role of stronger intralayer (sp(2))C-H center dot center dot center dot O and nonspecific interlayer pi-stacking interactions in the structure of II. Although the Form I also possesses the same type of interactions, its strength is clearly opposite, that is, weaker intralayer (sp(3))C-H center dot center dot center dot O and specific interlayer pi-stacking interactions. Hence, Form I is harder than Form IL Theoretical calculations and indentation on (111) of Form I suggested the low resistance of this face to mechanical stress; thus, Form I converts to II upon mechanical action. Hence, our approach demonstrates the usefulness of multiple techniques for establishing the role of weak noncovalent interactions in solid-state dynamic phenomena, such as stress induced phase transformation, and hence is important in the context of solid-state pharmaceutical chemistry and crystal engineering.