996 resultados para Large friction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new aerodynamic principle of flame stabilization and combustion intensification, the coflow jets with large velocity difference, is described. One or more small high-velocity jets of air or steam, injected off the axis and in the same direction as the low-velocity main fuel-air flow into the combustor, create a large recirculation zone of high turbulence intensity in which the combustibles and high temperature gases are effectively mixed, so that stable and intensive combustion can be maintained even for fuels with poor ignition. A pulverized coal combustor based on the principle mentioned above is shown to be characteristic of excellent combustoom and a simple structure. A number of precombustors of this type are in operation at some power stations and industrial boilers of China. Using such precombustor, successtul startups and part-load operation of the boilers have become available under conditions of unpreheated air and low-grade coal with volatiles as low as 15% and ash content as high as 30%. This principle shows good promise as an attractive new technology of combustion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions : the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a seriesexpansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sandwich-type plate with metal facings and felt core, fastened by bolts, was studied using both test and finite-element analysis. This type of plate is cheap, light, damping-effective and without pollution; therefore, it is widely used in astronautical engineering. The tests were conducted for different felt thicknesses, bolt numbers, and fastening forces. The results show that the damping depends on friction between the plates and the felt. As compared with an identical stiffness solid plate, the damping of laminated plates can be increased up to 30 times. A mesh with rectangular elements was adopted in the finite-element analysis. In accordance with the slipping mechanism, a rectangular plate clamped on one edge was analyzed with the foregoing elements to determine the resonant frequency and the damping. The difference between the calculated and tested results was within 5 percent for the resonant frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Columbus problem has been rigorously solved by Lyapunov's direct approach to the continuous system in gencral cases of large disturbance and the theory has proved to be in strict consistency with Kelvin's experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

in the corona, consisting of an eruptive prominence and/or a magnetic flux region (loop or arcade, or blob) in front of the prominence. Ahead of the piston, there is a compressed flow, which produces a shock front. This high-density region corresponds to the bright feature of the transient. Behind the piston, there is a rarefaction region, which corresponds to the dark feature of the transient. Therefore, both the bright and dark features of the transient may be explained at the same time by the dynamical process of the moving piston.