969 resultados para Lancaster Institution, Southwark, Eng.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance optimisation of automotive catalysts has been the focus of a great deal of research for many years as the automotive industry has endeavored to reduce the emission of toxic and pollutant gases generated from internal combustion engines. Just as the emissions from diesel and gasoline combustion vary so do the emissions from combustion of alternative fuels such as ethanol; the variation is in both quantity and chemical composition. In particular, when ethanol is contained in the fuel, ethanol and acetaldehyde are present in the exhaust gas stream and these are two compounds which the catalytic converter has not traditionally been designed to manage. The aim of the study outlined in this paper was to assess the performance of various catalyst formulations when subjected to a representative ethanol exhaust gas mixture. Three automotive catalytic converter formulations were tested including a fully Pt sample, a PdRh three-way catalyst sample and a fully Pd sample. Initially the samples were tested using single component hydrocarbon light-off tests followed by a set of tests with carbon monoxide included as an inlet gas to observe its effect on each individual hydrocarbon oxidation. Finally, each formulation was tested using a full E85 exhaust gas mixture. The study was carried out using a synthetic gas reactor along with FTIR and FID exhaust gas analysers. All formulations showed selectivity toward acetaldehyde formation from ethanol dehydrogenation which resulted in negative acetaldehyde conversion across each of the samples during the mixture tests. The fully Pt sample was the most detrimentally affected by the introduction of carbon monoxide into the gas feed. The Pd and PdRh samples exhibited a tendency toward acetaldehyde decomposition resulting in methane and carbon monoxide formation. The Pt sample did not form methane but did form ethylene as a result of ethanol dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In ultra-low data rate wireless sensor networks (WSNs) waking up just to listen to a beacon every superframe can be a major waste of energy. This study introduces MedMAC, a medium access protocol for ultra-low data rate WSNs that achieves significant energy efficiency through a novel synchronisation mechanism. The new draft IEEE 802.15.6 standard for body area networks includes a sub-class of applications such as medical implantable devices and long-term micro miniature sensors with ultra-low power requirements. It will be desirable for these devices to have 10 years or more of operation between battery changes, or to have average current requirements matched to energy harvesting technology. Simulation results are presented to show that the MedMAC allows nodes to maintain synchronisation to the network while sleeping through many beacons with a significant increase in energy efficiency during periods of particularly low data transfer. Results from a comparative analysis of MedMAC and IEEE 802.15.6 MAC show that MedMAC has superior efficiency with energy savings of between 25 and 87 for the presented scenarios. © 2011 The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the authors provide experimental characterisation of the field location effects that occur within a reverberant environment. This is achieved using a single active analogue phase conjugating unit positioned within a reverberant chamber. The authors demonstrate significant spatial focusing of ON-OFF-keyed 2.4 GHz signals. Furthermore, the effect of polarisation randomisation within such environments is discussed and it is shown that the system is highly tolerant of antenna orientation and does not require line of sight for its operation. © 2012 The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bromate in drinking water, at a level of microgrammes/litre, is a problem in ozonated waters but can be adsorbed, to a certain extent, by granular activated carbon. The adsorption capacity of granular activated carbon for bromate is significantly lowered when there are high concentrations of other anions, most notably chloride and sulphate, present in the water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of two separate ultraintense laser pulses in laser-proton acceleration was compared to the single pulse case employing the same total laser energy. A double pulse profile, with the temporal separation of the pulses varied between 0.75-2.5 ps, was shown to result in an increased maximum proton energy and an increase in conversion efficiency to fast protons by up to a factor of 3.3. Particle-in-cell simulations indicate the existence of a two stage acceleration process. The second phase, induced by the main pulse preferentially accelerates slower protons located deeper in the plasma, in contrast to conventional target normal sheath acceleration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate experimentally that the relativistic electron flow in a dense plasma can be efficiently confined and guided in targets exhibiting a high-resistivity-core-low-resistivity-cladding structure analogous to optical waveguides. The relativistic electron beam is shown to be confined to an area of the order of the core diameter (50 mu m), which has the potential to substantially enhance the coupling efficiency of electrons to the compressed fusion fuel in the Fast Ignitor fusion in full-scale fusion experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 10(21) W cm(-2). A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast electron energy spectra have been measured for a range of intensities between 10(18) and 10(21) W cm(-2) and for different target materials using electron spectrometers. Several experimental campaigns were conducted on petawatt laser facilities at the Rutherford Appleton Laboratory and Osaka University, where the pulse duration was varied from 0.5 to 5 ps relevant to upcoming fast ignition integral experiments. The incident angle was also changed from normal incidence to 40 degrees in p-polarized. The results confirm a reduction from the ponderomotive potential energy on fast electrons at the higher intensities under the wide range of different irradiation conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal foil targets were irradiated with 1 mu m wavelength (lambda) laser pulses of 5 ps duration and focused intensities (I) of up to 4x10(19) W cm(-2), giving values of both I lambda(2) and pulse duration comparable to those required for fast ignition inertial fusion. The divergence of the electrons accelerated into the target was determined from spatially resolved measurements of x-ray K-alpha emission and from transverse probing of the plasma formed on the back of the foils. Comparison of the divergence with other published data shows that it increases with I lambda(2) and is independent of pulse duration. Two-dimensional particle-in-cell simulations reproduce these results, indicating that it is a fundamental property of the laser-plasma interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K-alpha x-ray emission, extreme ultraviolet emission, and plasma imaging techniques have been used to diagnose energy transport patterns in copper foils ranging in thickness from 5 to 75 mu m for intensities up to 5x10(20) Wcm(-20). The K-alpha emission and shadowgrams both indicate a larger divergence angle than that reported in the literature at lower intensities [R. Stephens , Phys. Rev. E 69, 066414 (2004)]. Foils 5 mu m thick show triple-humped plasma expansion patterns at the back and front surfaces. Hybrid code modeling shows that this can be attributed to an increase in the mean energy of the fast electrons emitted at large radii, which only have sufficient energy to form a plasma in such thin targets.