934 resultados para LIQUID-PHASE HYDROGENATION


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbarnyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 mu m ODS (C-18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min(-1) and the column temperature was maintained at 30 degrees C Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32 +/- 1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15 +/- 0.1 cm(2). The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1 % v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 mu g ml(-1). The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) < 12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <=-5.60 and <=-8.00, respectively. Using this assay, it was found that GL-HCI permeates through human skin with a flux 1.497 +/- 0.42 mu g cm(-2) h(-1), a permeability coefficient of 5.66 +/- 1.6 x 10(-6) cm h(-1) and with a lag time of 10.9 +/- 4.6 h. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This review discusses liquid crystal phase formation by biopolymers in solution. Lyotropic mesophases have been observed for several classes of biopolymer including DNA, peptides, polymer/peptide conjugates, glycopolymers and proteoglycans. Nematic or chiral nematic (cholesteric) phases are the most commonly observed mesophases, in which the rod-like fibrils have only orientational order. Hexagonal columnar phases are observed for several systems (DNA, PBLG, polymer/peptide hybrids) at higher concentration. Lamellar (smectic) phases are reported less often, although there are examples such as the layer arrangement of amylopectin side chains in starch. Possible explanations for the observed structures are discussed. The biological role of liquid crystal phases for several of these systems is outlined. Commonly, they may serve as a template to align fibrils for defined structural roles when the biopolymer is extruded and dried, for instance in the production of silk by spiders or silkworms, or of chitin in arthropod shells. In other cases, liquid crystal phase formation may occur in vivo simply as a consequence of high concentration, for instance the high packing density of DNA within cell nuclei.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of irradiation (UV-visible light) on a nematic liquid crystal doped with a photoactive azobenzene derivative was investigated. The selective irradiation results in either an E implies Z or Z implies E isomerization of the azobenzene unit. The effect of the isomerization is to cause a reversible depression of the liquid crystal to isotropic (LC implies l) phase transition temperature of the doped mixture, which can be monitored optically as an isothermal phase transition. This depression also results in a biphasic liquid crystal+isotropic region which is discussed. The authors investigate the cause and magnitude of the phase depression as a function of the amount of doped 4-butyl-4'-methoxyazobenzene (photoactive unit) in 4-cyano-4'-n-pentylbiphenyl (liquid crystal unit), and as a function of the percentage conversion of E implies Z (caused by isomerization) in the azobenzene. The photostationary state of the doped mixtures achieved by Z implies E isomerization is considered and its effect upon the transition temperature of the mixture and response time of the system is discussed. They discuss the implications of the photostationary state with regards to the reversibility of the photo-induced phase transition and hence potential applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The homologous series of side chain liquid crystal polymers, the poly[x-(4-methoxyazobenzene- 40-oxy)alkyl methacrylate]s, has been prepared in which the length of the flexible alkyl spacer has been varied from 3 to 11 methylene units. All the polymers exhibit liquid crystalline behaviour. The propyl and butyl members show exclusively nematic behaviour. The pentyl, hexyl, octyl and decyl members show a nematic and a smectic A phase while the heptyl, nonyl and undecyl homologues exhibit only a smectic A phase. The smectic A phase has been studied using X-ray diffraction and assigned as a smectic A1 phase in which the side chains are fully overlapped and the backbones are confined to lie between the smectic layers. For the nonyl member an incommensurate smectic phase is observed. The dependence of the transition temperatures on the length of the flexible spacer is understood in terms of the average shapes of the side chains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The enantiomers of sulfoxide proton pump inhibitors - omeprazole, lansoprazole, rabeprazole and Ro 18-5364 - were enantiomerically separated by liquid chromatography at multimilligram scale on a poly saccharide-based chiral stationary phase using normal and polar organic conditions as mobile phase. The values of the recovery and production rate were significant for each enantiomer; better results were achieved using a solid-phase injection system. However, this system was applied just for the enantionteric separation of omeprazole to demonstrate the applicability of this injection mode at milligram scale. The chiroptical characterization of the compounds was performed using a polarimeter and a circular dichroism detector. The higher enantiomeric purity obtained for the isolated enantiomers suggests that the methods here described should be considered as a simple and rapid way to obtain enantiomeric pure standards for analytical purpose. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work demonstrates the successful application of automated biocompatible in-tube solid-phase microextraction coupled with liquid chromatography (in-tube SPME/LC) for determination of interferon alpha(2a) (IFN alpha(2a)) in plasma samples for therapeutic drug monitoring. A restricted access material (RAM, protein-coated silica) was employed for preparation of a lab-made biocompatible in-tube SPME capillary that enables the direct injection of biological fluids as well as the simultaneous exclusion of macromolecules by chemical diffusion barrier and drug pre-concentration. The in-tube SPME variables, such as sample volume, draw/eject volume, number of draw-eject cycles, and desorption mode were optimized, to improve the sensitivity of the proposed method. The IFN alpha(2a) analyses in plasma sample were carried out within 25 min (sample preparation and LC analyses). The response of the proposed method was linear over a dynamic range, from 0.06 to 3.0 MIU mL(-1), with correlation coefficient equal to 0.998. The interday precision of the method presented coefficient of variation lower than 8%. The proposed automated method has adequate analytical sensitivity and selectivity for determination of IFN alpha(2a) in plasma samples for therapeutic drug monitoring. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, an activity based screening technique combining two-dimensional liquid chromatography (2DHPLC) with UV-absorbance and chemiluminescence detection was applied to study “Ristretto”, "Decaffeinatto” and “Volluto” espresso coffees. This technique, which coupled the separation power of 2DHPLC with the sensitivity and selectivity of the chemiluminescence detection, offers great potential for screening complex samples for antioxidant compounds. Detailed information regarding the complexity of the sample, and the variation between these three coffees could be obtained using this multidimensional-hyphenated method of analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mixed mode stationary phases utilize secondary retention mechanisms to add a dimensionality to the surface of high performance liquid chromatography (HPLC) adsorbents. This approach was used by several authors to improve the separation performance of single dimension separations. We explored the magnitude of these secondary interactions by performing an off-line two-dimensional (2D)-HPLC separation with a Scherzo SM-C18 column of a β-lactoglobulin tryptic digest with a mobile phase pH of 7 in the first dimension and 2 in the second. Mechanism divergence was determined using the peak capacity and a geometric approach to factor analysis, to measure the correlation. This separation was repeated with a C18 stationary phase as a control. It was found that the C18 column had a correlation coefficient of 0.784, smaller than the mixed mode column, 0.884. This indicated that the retention mechanisms of the C18 column were more divergent under these two pH environments than the mixed mode column. However, the SM-C18 still provided alternative selectivity of the peptides to that of the C18 and could be considered as a good alternative for further 2D-HPLC separations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The retention characteristics of phenyl type stationary phases for reversed phase high performance liquid chromatography are still largely unknown. This paper explores the retention process of these types of stationary phases by examining the retention behaviour of linear PAHs and n-alkylbenzenes on a series of propyl phenyl stationary phases that have changes in their ligand density (1.23, 1.31, 1.97, 2.50 μmol m−2). The aromatic and methylene selectivities increased with increasing ligand density until a point where a plateau was observed, overall the propyl phenyl phases had a higher degree of aromatic selectivity than methylene selectivity indicating that these columns are suitable for separations involving aromatic compounds. Also, retention characteristics relating to the size of the solute molecule were observed to be influenced by the ligand density. It is likely that the changing retention characteristics are caused by the different topologies of the stationary phases at different ligand densities. At high ligand densities, the partition coefficient became constant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phenyl type stationary phases of increasing spacer chain length (phenyl, methyl phenyl, ethyl phenyl, propyl phenyl and butyl phenyl, with 0–4 carbon atoms in the spacer chain, respectively) were synthesised and packed in house to determine the impact that the spacer chain length has on the retention process. Two trends in the aromatic selectivity, qaromatic, were observed, depending on whether the number of carbon atoms in the spacer chain is even or odd. Linear log k′ vs ϕ plots were obtained for each stationary phase and the S coefficient was determined from the gradient of these plots. For the phenyl type phases, the S vs nc plots of the retention factors of linear polycyclic aromatic hydrocarbons vs the number of rings exhibit a distinct discontinuity that between 3 and 4 rings, which increases with increasing spacer chain length for even phases but decreases for odd phases. Accordingly, we suggest that the retention factors depend differently on the number of carbon atoms in the spacer chain depending on whether this number is even or odd and that this effect is caused by different orientations of the aromatic ring relative to the silica surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research study has developed new ways to control bulk properties of self-assembled microemulsions and lyotropic liquid crystals (LLCs) by manipulations of their corresponding precursor phase behaviour. Investigation into relating phase behaviour with the morphology, porosity, thermal stability, rheological property, and photoresponse of these assemblies has been carried out.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis and chromatographic behavior of an analytical size mixed-mode bonded silica monolith was investigated. The monolith was functionalized by an in situ modification process of a bare silica rod with chloro(3-cyanopropyl)dimethyl silane and chlorodimethyl propyl phenyl silane solutions. These ligands were selected in order to combine both resonance and nonresonance π-type bonding within a single separation environment. Selectivity studies were undertaken using n-alkyl benzenes and polycyclic aromatic hydrocarbons in aqueous methanol and acetonitrile mobile phases to assess the methylene and aromatic selectivities of the column. The results fit with the linear solvent strength theory suggesting excellent selectivity of the column was achieved. Comparison studies were performed on monolithic columns that were functionalized separately with cyano and phenyl ligands, suggesting highly conjugated molecules were able to successfully exploit both of the π-type selectivities afforded by the two different ligands on the mixed-mode column.