977 resultados para Lógica modal
Resumo:
En este se estudia diseños y e implementaciones de paradigmas visuales para observar la ejecución de programas lógicos con restricciones, enfocados hacia la depuración, optimización y enseñanza. Nos centraremos en la representación de datos en ejecuciones CLP, donde perseguimos la representación de variables con restricciones y de las restricciones en sí mismas. Se han implementado dos herramientas, VIFID y TRIFID, que utilizan dichas representaciones y que se usan para mostrar la utilidad de las visualizaciones desarrolladas.
Resumo:
Resumen La investigación descrita en esta memoria se enmarca en el campo de la lógica borro¬sa. Más concretamente, en el estudio de la incompatibilidad, de la compatibilidad y de la suplementaridad en los conjuntos borrosos y en los de Atanassov. En este orden de ideas, en el primer capítulo, se construyen, tanto de forma directa como indirecta, funciones apropiadas para medir la incompatibilidad entre dos conjuntos borro-sos. Se formulan algunos axiomas para modelizar la continuidad de dichas funciones, y se determina si las medidas propuestas, y otras nuevas que se introducen, verifican algún tipo de continuidad. Finalmente, se establece la noción de conjuntos borrosos compatibles, se introducen axiomas para medir esta propiedad y se construyen algunas medidas de compa¬tibilidad. El segundo capítulo se dedica al estudio de la incompatibilidad y de la compatibilidad en el campo de los conjuntos de Atanassov. Así, en primer lugar, se presenta una definición axiomática de medida de incompatibilidad en este contexto. Después, se construyen medidas de incompatibilidad por medio de los mismos métodos usados en el caso borroso. Además, se formulan axiomas de continuidad y se determina el tipo de continuidad de las medidas propuestas. Finalmente, se sigue un camino similar al caso borroso para el estudio de la compatibilidad. En el tercer capítulo, después de abordar la antonimia de conjuntos borrosos y de conjuntos de Atanassov, se formalizan las nociones de conjuntos suplementarios en estos dos entornos y se presenta, en ambos casos, un método para obtener medidas de suplementaridad a partir de medidas de incompatibilidad vía antónimos. The research described in this report pertains to the field of fuzzy logic and specifically studies incompatibility, compatibility and supplementarity in fuzzy sets and Atanassov's fuzzy sets. As such is the case, Chapter 1 describes both the direct and indirect construction of appropriate functions for measuring incompatibility between two fuzzy sets. We formulate some axioms for modelling the continuity of functions and determine whether the proposed and other measures introduced satisfy any type of continuity. Chapter 2 focuses on the study of incompatibility and compatibility in the field of Ata¬nassov's fuzzy sets. First, we present an axiomatic definition of incompatibility measure in this field. Then, we use the same methods to construct incompatibility measures as in the fuzzy case. Additionally, we formulate continuity axioms and determine the type of conti¬nuity of the proposed measures. Finally, we take a similar approach as in the fuzzy case to the study of compatibility. After examining the antonymy of fuzzy sets and Atanassov's sets, Chapter 3 formalizes the notions of supplementary sets in these two domains, and, in both cases, presents a method for obtaining supplementarity measures from incompatibility measures via antonyms.
Resumo:
This paper presents the Expectation Maximization algorithm (EM) applied to operational modal analysis of structures. The EM algorithm is a general-purpose method for maximum likelihood estimation (MLE) that in this work is used to estimate state space models. As it is well known, the MLE enjoys some optimal properties from a statistical point of view, which make it very attractive in practice. However, the EM algorithm has two main drawbacks: its slow convergence and the dependence of the solution on the initial values used. This paper proposes two different strategies to choose initial values for the EM algorithm when used for operational modal analysis: to begin with the parameters estimated by Stochastic Subspace Identification method (SSI) and to start using random points. The effectiveness of the proposed identification method has been evaluated through numerical simulation and measured vibration data in the context of a benchmark problem. Modal parameters (natural frequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using SSI and the EM algorithm. On the whole, the results show that the application of the EM algorithm starting from the solution given by SSI is very useful to identify the vibration modes of a structure, discarding the spurious modes that appear in high order models and discovering other hidden modes. Similar results are obtained using random starting values, although this strategy allows us to analyze the solution of several starting points what overcome the dependence on the initial values used.
Resumo:
The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.
Resumo:
This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.
Resumo:
La sostenibilidad constituye un criterio esencial para evaluar la calidad de un proyecto. En este sentido este trabajo presenta el desarrollo de una metodología y un programa para la evaluación de la sostenibilidad social, económica y medio-ambiental de proyectos para llegar a conseguir una evaluación global de sostenibilidad de dichos proyectos. Tradicionalmente los estudios y evaluación de proyectos se realizan sólo desde el punto de vista económico. Se aplica la lógica borrosa a cada uno de los cálculos que se realizan en el análisis global de la sostenibilidad: valoración de indicadores, la evaluación cuantitativa y cualitativa del impacto que produce un proyecto en los diferentes factores medioambientales, sociales y económicos. Cabe destacar que dependiendo del tipo de proyecto se tendrá un peso de cada indicador y de cada factor distinto. Se ha tomado como base la normativa existente para la evaluación del impacto ambiental
Resumo:
The modal analysis of a structural system consists on computing its vibrational modes. The experimental way to estimate these modes requires to excite the system with a measured or known input and then to measure the system output at different points using sensors. Finally, system inputs and outputs are used to compute the modes of vibration. When the system refers to large structures like buildings or bridges, the tests have to be performed in situ, so it is not possible to measure system inputs such as wind, traffic, . . .Even if a known input is applied, the procedure is usually difficult and expensive, and there are still uncontrolled disturbances acting at the time of the test. These facts led to the idea of computing the modes of vibration using only the measured vibrations and regardless of the inputs that originated them, whether they are ambient vibrations (wind, earthquakes, . . . ) or operational loads (traffic, human loading, . . . ). This procedure is usually called Operational Modal Analysis (OMA), and in general consists on to fit a mathematical model to the measured data assuming the unobserved excitations are realizations of a stationary stochastic process (usually white noise processes). Then, the modes of vibration are computed from the estimated model. The first issue investigated in this thesis is the performance of the Expectation- Maximization (EM) algorithm for the maximum likelihood estimation of the state space model in the field of OMA. The algorithm is described in detail and it is analysed how to apply it to vibration data. After that, it is compared to another well known method, the Stochastic Subspace Identification algorithm. The maximum likelihood estimate enjoys some optimal properties from a statistical point of view what makes it very attractive in practice, but the most remarkable property of the EM algorithm is that it can be used to address a wide range of situations in OMA. In this work, three additional state space models are proposed and estimated using the EM algorithm: • The first model is proposed to estimate the modes of vibration when several tests are performed in the same structural system. Instead of analyse record by record and then compute averages, the EM algorithm is extended for the joint estimation of the proposed state space model using all the available data. • The second state space model is used to estimate the modes of vibration when the number of available sensors is lower than the number of points to be tested. In these cases it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors). Here, the proposed state space model and the EM algorithm are used to estimate the modal parameters taking into account the data of all setups. • And last, a state space model is proposed to estimate the modes of vibration in the presence of unmeasured inputs that cannot be modelled as white noise processes. In these cases, the frequency components of the inputs cannot be separated from the eigenfrequencies of the system, and spurious modes are obtained in the identification process. The idea is to measure the response of the structure corresponding to different inputs; then, it is assumed that the parameters common to all the data correspond to the structure (modes of vibration), and the parameters found in a specific test correspond to the input in that test. The problem is solved using the proposed state space model and the EM algorithm. Resumen El análisis modal de un sistema estructural consiste en calcular sus modos de vibración. Para estimar estos modos experimentalmente es preciso excitar el sistema con entradas conocidas y registrar las salidas del sistema en diferentes puntos por medio de sensores. Finalmente, los modos de vibración se calculan utilizando las entradas y salidas registradas. Cuando el sistema es una gran estructura como un puente o un edificio, los experimentos tienen que realizarse in situ, por lo que no es posible registrar entradas al sistema tales como viento, tráfico, . . . Incluso si se aplica una entrada conocida, el procedimiento suele ser complicado y caro, y todavía están presentes perturbaciones no controladas que excitan el sistema durante el test. Estos hechos han llevado a la idea de calcular los modos de vibración utilizando sólo las vibraciones registradas en la estructura y sin tener en cuenta las cargas que las originan, ya sean cargas ambientales (viento, terremotos, . . . ) o cargas de explotación (tráfico, cargas humanas, . . . ). Este procedimiento se conoce en la literatura especializada como Análisis Modal Operacional, y en general consiste en ajustar un modelo matemático a los datos registrados adoptando la hipótesis de que las excitaciones no conocidas son realizaciones de un proceso estocástico estacionario (generalmente ruido blanco). Posteriormente, los modos de vibración se calculan a partir del modelo estimado. El primer problema que se ha investigado en esta tesis es la utilización de máxima verosimilitud y el algoritmo EM (Expectation-Maximization) para la estimación del modelo espacio de los estados en el ámbito del Análisis Modal Operacional. El algoritmo se describe en detalle y también se analiza como aplicarlo cuando se dispone de datos de vibraciones de una estructura. A continuación se compara con otro método muy conocido, el método de los Subespacios. Los estimadores máximo verosímiles presentan una serie de propiedades que los hacen óptimos desde un punto de vista estadístico, pero la propiedad más destacable del algoritmo EM es que puede utilizarse para resolver un amplio abanico de situaciones que se presentan en el Análisis Modal Operacional. En este trabajo se proponen y estiman tres modelos en el espacio de los estados: • El primer modelo se utiliza para estimar los modos de vibración cuando se dispone de datos correspondientes a varios experimentos realizados en la misma estructura. En lugar de analizar registro a registro y calcular promedios, se utiliza algoritmo EM para la estimación conjunta del modelo propuesto utilizando todos los datos disponibles. • El segundo modelo en el espacio de los estados propuesto se utiliza para estimar los modos de vibración cuando el número de sensores disponibles es menor que vi Resumen el número de puntos que se quieren analizar en la estructura. En estos casos es usual realizar varios ensayos cambiando la posición de los sensores de un ensayo a otro (múltiples configuraciones de sensores). En este trabajo se utiliza el algoritmo EM para estimar los parámetros modales teniendo en cuenta los datos de todas las configuraciones. • Por último, se propone otro modelo en el espacio de los estados para estimar los modos de vibración en la presencia de entradas al sistema que no pueden modelarse como procesos estocásticos de ruido blanco. En estos casos, las frecuencias de las entradas no se pueden separar de las frecuencias del sistema y se obtienen modos espurios en la fase de identificación. La idea es registrar la respuesta de la estructura correspondiente a diferentes entradas; entonces se adopta la hipótesis de que los parámetros comunes a todos los registros corresponden a la estructura (modos de vibración), y los parámetros encontrados en un registro específico corresponden a la entrada en dicho ensayo. El problema se resuelve utilizando el modelo propuesto y el algoritmo EM.
Resumo:
Un método habitual de formarse una idea del futuro de la tecnología es leer a un reducido grupo de personajes, tales como Gates o Negroponte. Estos también confunden sus deseos con la realidad, tienden a ver el mundo en colorines y yerran, pero tienen sobre nosotros la ventaja de que sus palabras son las palabras de un selecto y denso colectivo de superespecialistas a sus órdenes. En parte, ellos son los dueños del futuro, lo están diseñando, construyendo o comprando en sus laboratorios o empresas. Tienen poder.
Resumo:
During launch, satellite and their equipment are subjected to loads of random nature and with a wide frequency range. Their vibro-acoustic response is an important issue to be analysed, for example for folded solar arrays and antennas. The main issue at low modal density is the modelling combinations engaging air layers, structures and external fluid. Depending on the modal density different methodologies, as FEM, BEM and SEA should be considered. This work focuses on the analysis of different combinations of the methodologies previously stated used in order to characterise the vibro-acoustic response of two rectangular sandwich structure panels isolated and engaging an air layer between them under a diffuse acoustic field. Focusing on the modelling of air layers, different models are proposed. To illustrate the phenomenology described and studied, experimental results from an acoustic test on an ARA-MKIII solar array in folded configuration are presented along with numerical results.
Resumo:
Computing the modal parameters of structural systems often requires processing data from multiple non-simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors, which are fixed for all measurements, while the other sensors change their position from one setup to the next. One possibility is to process the setups separately resulting in different modal parameter estimates for each setup. Then, the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global mode shapes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a new state space model that processes all setups at once. The result is that the global mode shapes are obtained automatically, and only a value for the natural frequency and damping ratio of each mode is estimated. We also investigate the estimation of this model using maximum likelihood and the Expectation Maximization algorithm, and apply this technique to simulated and measured data corresponding to different structures.
Resumo:
In Operational Modal Analysis of structures we often have multiple time history records of vibrations measured at different time instants. This work presents a procedure for estimating the modal parameters of the structure processing all the records, that is, using all available information to obtain a single estimate of the modal parameters. The method uses Maximum Likelihood Estimation and the Expectation Maximization algorithm. Finally, it has been applied to various problems for both simulated and real structures and the results show the advantage of the joint analysis proposed.
Resumo:
This paper presents a time-domain stochastic system identification method based on Maximum Likelihood Estimation and the Expectation Maximization algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated applying the proposed identification method to a set of 100 simulated cases. The numerical results show that the proposed method estimates all the modal parameters reasonably well in the presence of 30% measurement noise even. Finally, advantages and disadvantages of the method have been discussed.
Resumo:
In Operational Modal Analysis (OMA) of a structure, the data acquisition process may be repeated many times. In these cases, the analyst has several similar records for the modal analysis of the structure that have been obtained at di�erent time instants (multiple records). The solution obtained varies from one record to another, sometimes considerably. The differences are due to several reasons: statistical errors of estimation, changes in the external forces (unmeasured forces) that modify the output spectra, appearance of spurious modes, etc. Combining the results of the di�erent individual analysis is not straightforward. To solve the problem, we propose to make the joint estimation of the parameters using all the records. This can be done in a very simple way using state space models and computing the estimates by maximum-likelihood. The method provides a single result for the modal parameters that combines optimally all the records.
Resumo:
In order to achieve to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. In the transport modelling literature there has been an increasing awareness that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users? social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced, but links between international and Spanish perspectives are rarely deal. In this paper, factorial and path analyses through a Multiple-Indicator Multiple-Cause (MIMIC) model are used to understand and describe the relationship between the different psychological and environmental constructs with social influence and socioeconomic variables. The MIMIC model generates Latent Variables (LVs) to be incorporated sequentially into Discrete Choice Models (DCM) where the levels of service and cost attributes of travel modes are also included directly to measure the effect of the transport policies that have been introduced in Madrid during the last three years in the context of the economic crisis. The data used for this paper are collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) of Madrid.
Resumo:
Los lenguajes de programación son el idioma que los programadores usamos para comunicar a los computadores qué queremos que hagan. Desde el lenguaje ensamblador, que traduce una a una las instrucciones que interpreta un computador hasta lenguajes de alto nivel, se ha buscado desarrollar lenguajes más cercanos a la forma de pensar y expresarse de los humanos. Los lenguajes de programación lógicos como Prolog utilizan a su vez el lenguaje de la lógica de 1er orden de modo que el programador puede expresar las premisas del problema que se quiere resolver sin preocuparse del cómo se va a resolver dicho problema. La resolución del problema se equipara a encontrar una deducción del objetivo a alcanzar a partir de las premisas y equivale a lo que entendemos por la ejecución de un programa. Ciao es una implementación de Prolog (http://www.ciao-lang.org) y utiliza el método de resolución SLD, que realiza el recorrido de los árboles de decisión en profundidad(depth-first) lo que puede derivar en la ejecución de una rama de busqueda infinita (en un bucle infinito) sin llegar a dar respuestas. Ciao, al ser un sistema modular, permite la utilización de extensiones para implementar estrategias de resolución alternativas como la tabulación (OLDT). La tabulación es un método alternativo que se basa en memorizar las llamadas realizadas y sus respuestas para no repetir llamadas y poder usar las respuestas sin recomputar las llamadas. Algunos programas que con SLD entran en un bucle infinito, gracias a la tabulación dán todas las respuestas y termina. El modulo tabling es una implementación de tabulación mediante el algoritmo CHAT. Esta implementación es una versión beta que no tiene implementado un manejador de memoria. Entendemos que la gestión de memoria en el módulo de tabling tiene gran importancia, dado que la resolución con tabulación permite reducir el tiempo de computación (al no repetir llamadas), aumentando los requerimientos de memoria (para guardar las llamadas y las respuestas). Por lo tanto, el objetivo de este trabajo es implementar un mecanismo de gestión de la memoria en Ciao con el módulo tabling cargado. Para ello se ha realizado la implementación de: Un mecanismo de captura de errores que: detecta cuando el computador se queda sin memoria y activa la reinicialización del sitema. Un procedimiento que ajusta los punteros del modulo de tabling que apuntan a la WAM tras un proceso de realojo de algunas de las áreas de memoria de la WAM. Un gestor de memoria del modulo de tabling que detecta c realizar una ampliación de las áreas de memoria del modulo de tabling, realiza la solicitud de más memoria y realiza el ajuste de los punteros. Para ayudar al lector no familiarizado con este tema, describimos los datos que Ciao y el módulo de tabling alojan en las áreas de memoria dinámicas que queremos gestionar. Los casos de pruebas desarrollados para evaluar la implementación del gestor de memoria, ponen de manifiesto que: Disponer de un gestor de memoria dinámica permite la ejecución de programas en un mayor número de casos. La política de gestión de memoria incide en la velocidad de ejecución de los programas. ---ABSTRACT---Programming languages are the language that programmers use in order to communicate to computers what we want them to do. Starting from the assembly language, which translates one by one the instructions to the computer, and arriving to highly complex languages, programmers have tried to develop programming languages that resemble more closely the way of thinking and communicating of human beings. Logical programming languages, such as Prolog, use the language of logic of the first order so that programmers can express the premise of the problem that they want to solve without having to solve the problem itself. The solution to the problem is equal to finding a deduction of the objective to reach starting from the premises and corresponds to what is usually meant as the execution of a program. Ciao is an implementation of Prolog (http://www.ciao-lang.org) and uses the method of resolution SLD that carries out the path of the decision trees in depth (depth-frist). This can cause the execution of an infinite searching branch (an infinite loop) without getting to an answer. Since Ciao is a modular system, it allows the use of extensions to implement alternative resolution strategies, such as tabulation (OLDT). Tabulation is an alternative method that is based on the memorization of executions and their answers, in order to avoid the repetition of executions and to be able to use the answers without reexecutions. Some programs that get into an infinite loop with SLD are able to give all the answers and to finish thanks to tabulation. The tabling package is an implementation of tabulation through the algorithm CHAT. This implementation is a beta version which does not present a memory handler. The management of memory in the tabling package is highly important, since the solution with tabulation allows to reduce the system time (because it does not repeat executions) and increases the memory requirements (in order to save executions and answers). Therefore, the objective of this work is to implement a memory management mechanism in Ciao with the tabling package loaded. To achieve this goal, the following implementation were made: An error detection system that reveals when the computer is left without memory and activate the reinizialitation of the system. A procedure that adjusts the pointers of the tabling package which points to the WAM after a process of realloc of some of the WAM memory stacks. A memory manager of the tabling package that detects when it is necessary to expand the memory stacks of the tabling package, requests more memory, and adjusts the pointers. In order to help the readers who are not familiar with this topic, we described the data which Ciao and the tabling package host in the dynamic memory stacks that we want to manage. The test cases developed to evaluate the implementation of the memory manager show that: A manager for the dynamic memory allows the execution of programs in a larger number of cases. Memory management policy influences the program execution speed.