978 resultados para Kentucky. Dept. of Mines and Minerals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clay minerals are layer type aluminosilicates that figure in terrestrial biogeochemical cycles, in the buffering capacity of the oceans, and in the containment of toxic waste materials. They are also used as lubricants in petroleum extraction and as industrial catalysts for the synthesis of many organic compounds. These applications derive fundamentally from the colloidal size and permanent structural charge of clay mineral particles, which endow them with significant surface reactivity. Unraveling the surface geochemistry of hydrated clay minerals is an abiding, if difficult, topic in earth sciences research. Recent experimental and computational studies that take advantage of new methodologies and basic insights derived from the study of concentrated ionic solutions have begun to clarify the structure of electrical double layers formed on hydrated clay mineral surfaces, particularly those in the interlayer region of swelling 2:1 layer type clay minerals. One emerging trend is that the coordination of interlayer cations with water molecules and clay mineral surface oxygens is governed largely by cation size and charge, similarly to a concentrated ionic solution, but the location of structural charge within a clay layer and the existence of hydrophobic patches on its surface provide important modulations. The larger the interlayer cation, the greater the influence of clay mineral structure and hydrophobicity on the configurations of adsorbed water molecules. This picture extends readily to hydrophobic molecules adsorbed within an interlayer region, with important implications for clay–hydrocarbon interactions and the design of catalysts for organic synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PhD activity described in this Thesis was focused on the study of metal-oxide wide-bandgap materials, aiming at fabricating new optoelectronic devices such as solar-blind UV photodetectors, high power electronics, and gas sensors. Photocurrent spectroscopy and DC photocurrent time evolution were used to investigate the performance of prototypes under different atmospheres, temperatures and excitation wavelengths (or dark conditions). Cathodoluminescence, absorption spectroscopy, XRD and SEM were used to assess structural, morphologic, electrical and optical properties of materials. This thesis is divided into two main sections, each describing the work done on a different metal-oxide semiconductor. 1) MOVPE-grown Ga2O3 thin films for UV solar-blind photodetectors and high power devices The semiconducting oxides, among them Ga2O3, have been employed for several decades as transparent conducting oxide (TCO) electrodes for fabrication of solar cells, displays, electronic, and opto-electronic devices. The interest was mainly confined to such applications, as these materials tend to grow intrinsically n-type, and attempts to get an effective p-type doping has consistently failed. The key requirements of TCO electrodes are indeed high electrical conductivity and good transparency, while crystallographic perfection is a minor issue. Furthermore, for a long period no high-quality substrates and epi-layers were available, which in turn impeded the development of a truly full-oxide electronics. Recently, Ga2O3 has attracted renewed interest, as large single crystals and high-quality homo- and hetero-epitaxial layers became available, which paved the way to novel application areas. Our research group spent the last two years in developing a low temperature (500-700°C) MOVPE growth procedure to obtain thin films of Ga2O3 on different substrates (Dept. of Physics and IMEM-CNR at UNIPR). We obtained a significant result growing on oriented sapphire epitaxial films of high crystalline, undoped, pure phase -Ga2O3 (hexagonal). The crystallographic properties of this phase were investigated by XRD, in order to clarify the lattice parameters of the hexagonal cell. First design and development of solar blind UV photodetectors based on -phase was carried out and the optoelectronic performance is evaluated by means of photocurrent spectroscopy. The UV-response is adequately fast and reliable to render this unusual phase a subject of great interest for future applications. The availability of a hexagonal phase of Ga2O3 stable up to 700°C, belonging to the same space group of gallium nitride, with high crystallinity and tunable electrical properties, is intriguing in view of the development of nitride-based devices, by taking advantage of the more favorable symmetry and epitaxial relationships with respect to the monoclinic β-phase. In addition, annealing at temperatures higher than 700°C demonstrate that the hexagonal phase converts totally in the monoclinic one. 2) ZnO nano-tetrapods: charge transport mechanisms and time-response in optoelectronic devices and sensors Size and morphology of ZnO at the nanometer scale play a key role in tailoring its physical and chemical properties. Thanks to the possibility of growing zinc oxide in a variety of different nanostructures, there is a great variety of applications, among which gas sensors, light emitting diodes, transparent conducting oxides, solar cells. Even if the operation of ZnO nanostructure-based devices has been recently demonstrated, the mechanisms of charge transport in these assembly is still under debate. The candidate performed an accurate investigation by photocurrent spectroscopy and DC-photocurrent time evolution of electrical response of both single-tetrapod and tetrapod-assembly devices. During the research done for this thesis, a thermal activation energy enables the performance of samples at high temperatures (above about 300°C). The energy barrier is related to the leg-to-leg interconnection in the assembly of nanotetrapods. Percolation mechanisms are responsible for both the very slow photo-response (minutes to hours or days) and the significant persistent photocurrent. Below the bandgap energy, electronic states were investigated but their contribution to the photocurrent are two-three order of magnitude lower than the band edge. Such devices are suitable for employ in photodetectors as well as in gas sensors, provided that the mechanism by which the photo-current is generated and gas adsorption on the surface modify the conductivity of the material are known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper reports results of a study of clastic heavy mineral assemblages and geochemical features of some assemblages in several Permian-Mesozoic cherty and siliceous-clayey sequences of the Sikhote Alin Region. They are composed of pelagic and hemipelagic sediments of the Panthalassa (Paleopacific) Ocean. Four typical mineral assemblages and their environments are established. In one of the ocean segments, where the sedimentary cover formed during Late Paleozoic - Early Cretaceous, the Permian pelagic domain was characterized by the amphibole-pyroxene assemblage with heavy minerals derived from ophiolites. The Triassic-Jurassic stage was marked by development of the clinopyroxene assemblage with heavy minerals derived from intraplate alkaline volcanic complexes. Middle-Late Jurassic hemipelagic sediments host the zircon-clinopyroxene assemblage with greater role of continental environments and presence of volcanic products of the convergence zone. Another segment of the ocean accumulated red cherts and siliceous-clayey sediments during Jurassic - Early Cretaceous under influence of island-arc volcanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineralogical analysis of manganese nodules and crusts collected from Indian ocean aboard Marion Dufresne points to a depth and regional control upon the manganese oxide association: vernadite - birnessite and vernadite - todorokite. Moreover, progressive changes in the vernadite/birnessite ratio as a function of time is clearly seen. Magnetite and titano-magnetite in quantities similar to those of framboidal pyrite in manganese nodules are outlined for the first time. Study of the distribution of metals (Mn, Fe, Ni, Cu, Co) shows a strong latitudinal and regional dependence that may be connected to high productivity zones and to bottom water properties. The problem of mineralogical control on the chemical composition is approached. Finally, it results that any interpretations taking into account all these data haveway to give to the variability of sea-water properties (pH, oxygenation, motions) the prominent control upon manganese nodules composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complex of mineralogical techniques used in studies of near-surface layer hemipelagic sediments indicates that disordered todorokite and hexagonal birnessite dominate in manganese micronodules, whereas hexagonal birnessite is the main phase of micronodules from miopelagic sediments. Content of todorokite increases downward through the miopelagic sedimentary sequence; this can be reasonably explained by transformations of some other manganese minerals to todorokite. Occurrence of several manganese minerals in studied samples may reflect temporal and lateral variations in C_org content in sediments and respective local fluctuations in environmental conditions (pH, Eh, geochemical activity of Mn, etc.). Todorokite may have formed under the most anoxic conditions near the water-sediment interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on lithium, rubidium and cesium concentrations in waters of open seas and oceans are summarized. Average amounts of these elements in the World Ocean inferred from published data and those obtained by the author are as follows: Li - 0.18 mg/l, Rb - 0.12 mg/l and Cs - 0.004 mg/l. Rare alkaline elements in the oceans and open seas are distributed (like sodium and potassium) in accordance with salinity. The ability of lithium to become a constituent of clay minerals accounts for its relatively low concentration in sea water as compared with that of sodium and potassium. Compared to rubidium and cesium that have high absorption energy and low hydration energy, lithium relatively enriches sea water. Residence times of these elements in the ocean are: Na - 120 My, Li - 2.7 My, Rb - 2.3 My and Cs - 0.3 My.