922 resultados para Juta fibers
Resumo:
Certificación de la composición de muestras de tejido
Resumo:
Informe de resultados del proyecto titulado "Estampación detejidos sintéticos para lafabricación de prendas de deportepor el método de sublimación"
Resumo:
Informe de resultados del proyecto titulado "Estampación detejidos sintéticos para lafabricación de prendas de deportepor el método de sublimación"
Resumo:
Identificación de la composición en fibras de un tejido mediante identificación con microscopio óptico
Resumo:
The vulnerability of subpopulations of retinal neurons delineated by their content of cytoskeletal or calcium-binding proteins was evaluated in the retinas of cynomolgus monkeys in which glaucoma was produced with an argon laser. We quantitatively compared the number of neurons containing either neurofilament (NF) protein, parvalbumin, calbindin or calretinin immunoreactivity in central and peripheral portions of the nasal and temporal quadrants of the retina from glaucomatous and fellow non-glaucomatous eyes. There was no significant difference between the proportion of amacrine, horizontal and bipolar cells labeled with antibodies to the calcium-binding proteins comparing the two eyes. NF triplet immunoreactivity was present in a subpopulation of retinal ganglion cells, many of which, but not all, likely correspond to large ganglion cells that subserve the magnocellular visual pathway. Loss of NF protein-containing retinal ganglion cells was widespread throughout the central (59-77% loss) and peripheral (96-97%) nasal and temporal quadrants and was associated with the loss of NF-immunoreactive optic nerve fibers in the glaucomatous eyes. Comparison of counts of NF-immunoreactive neurons with total cell loss evaluated by Nissl staining indicated that NF protein-immunoreactive cells represent a large proportion of the cells that degenerate in the glaucomatous eyes, particularly in the peripheral regions of the retina. Such data may be useful in determining the cellular basis for sensitivity to this pathologic process and may also be helpful in the design of diagnostic tests that may be sensitive to the loss of the subset of NF-immunoreactive ganglion cells.
Resumo:
Objective: There are only a few established artificial urinary sphincters for treatment of incontinence. We have developed a new device composed by three parts: the actuator, three contractile rings and a control unit. The actuator is made of Nitinol fibers, driven by microprocessor. The fibers are linked to the rings placed around the urethra. They function with alternance in their open and closed position. This concept is called piano concept. With this set-up, the constant compression on the urethra is strongly reduced. Methods: Six male sheep have been used for this study. The sphincter was open each hour for a period of 10 min., to guaranty urination. The bladder was filled with water while one cuff was closed and bladder pressure was monitored. The animals were sacrificed. Two biopsies around two cuffs of each explant and all three cuffs from each explant including urethra were analyzed. Urethra not surrounded by a cuff was taken as control. Results: The pressure exerted by the sphincter around the urethra provided continence. Simulated incontinence occurred at a pressure of 1bar measured on the bladder wall using a pressure probe. The closing force of the cuff was approx. 0·7N. No difference in tissue structure and organization of the urethra with and without artificial sphincter was observed. Conclusions: This device has several advantages compared to other urinary sphincters. It is easy to implant, has no hydraulic nature and reduces ischemic injury of the urethra by the alternance of urethral part compressed. Proof of concept in vivo has been demonstrated. Other studies are planned to determine long-term outcome.
Resumo:
The tubero-infundibular and nigrostriatal DA neurone systems of rats respond to systemic (i.p.) injection of alpha-MSH (2-100 microgram/kg). The response of the tubero-infundibular (arcuate) DA neurones, an increase in cellular fluorescence intensity which can be interpreted as a sign of increased neuronal activity, is essentially the same in males, estrogen-progesterone-pretreated ovariectomized females and hypophysectomized males, whereas the type of response elicited by alpha-MSH in the nigral DA neurones depends upon the hormonal state of the animal. Differences between the two DA neurone groups exist also with regard to the effects of peptide fragments containing the two active sites of the alpha-MSH molecule. Results of lesion experiments in the lower brainstem (area postrema) and of blockade of muscarinic mechanisms by atropine further point to differences in the mechanisms underlying the peptide effects on the two neurone systems. The reaction of the tubero-infundibular DA system (which controls the pars intermedia of the pituitary) can be considered to reflect the activation of a feedback mechanism on MSH secretion, while the functional counterpart of the changes observed in the nigral system remains unknown at the present time.
Resumo:
Bisphosphonates are potent inhibitors of osteoclast function widely used to treat conditions of excessive bone resorption, including tumor bone metastases. Recent evidence indicates that bisphosphonates have direct cytotoxic activity on tumor cells and suppress angiogenesis, but the associated molecular events have not been fully characterized. In this study we investigated the effects of zoledronate, a nitrogen-containing bisphosphonate, and clodronate, a non-nitrogen-containing bisphosphonate, on human umbilical vein endothelial cell (HUVEC) adhesion, migration, and survival, three events essential for angiogenesis. Zoledronate inhibited HUVEC adhesion mediated by integrin alphaVbeta3, but not alpha5beta1, blocked migration and disrupted established focal adhesions and actin stress fibers without modifying cell surface integrin expression level or affinity. Zoledronate treatment slightly decreased HUVEC viability and strongly enhanced tumor necrosis factor (TNF)-induced cell death. HUVEC treated with zoledronate and TNF died without evidence of enhanced annexin-V binding, chromatin condensation, or nuclear fragmentation and caspase dependence. Zoledronate inhibited sustained phosphorylation of focal adhesion kinase (FAK) and in combination with TNF, with and without interferon (IFN) gamma, of protein kinase B (PKB/Akt). Constitutive active PKB/Akt protected HUVEC from death induced by zoledronate and TNF/IFNgamma. Phosphorylation of c-Src and activation of NF-kappaB were not affected by zoledronate. Clodronate had no effect on HUVEC adhesion, migration, and survival nor did it enhanced TNF cytotoxicity. Taken together these data demonstrate that zoledronate sensitizes endothelial cells to TNF-induced, caspase-independent programmed cell death and point to the FAK-PKB/Akt pathway as a novel zoledronate target. These results have potential implications to the clinical use of zoledronate as an anti-angiogenic or anti-cancer agent.
Resumo:
Introduction and objectives: The AMS 800TM is considered the gold standard for sphincter replacement. However, the one-ring design can erode the urethra and lead to severe complications. A mechanism that could alternatively compress successive segments of the urethra would limit such deleterious outcome. We report 12 weeks animal urethral tissue analysis following implantation of a new modular artificial sphincter. METHODS: The device is composed by three parts: the contractile unit, two rings and an integrated microprocessor. The contractile unit is made of Nitinol fibers. The rings are placed around the urethra to control the flow of urine by squeezing the urethra. They work in a sequential alternative mode and are controlled by a microprocessor connected to an external computer. The computer can reveal specific failure of device components. The device was impkanted in eight male sheep. The rings were positioned around the urethra and the control unit was placed 5cm away. The device was working twenty hours per day; it was open 10min. per hour to allow urination. The animals were sacrificed after 12 weeks. The urethra and the tissues surrounding the control unit were macroscopically and microscopically examined. Two transversal sections crossing the sphincter and two transversal sections crossing the urethra alone were obtained and stained with modified Paragon after resin embedding. Urethra was also embedded in paraffin. The first section was stained with safranin-hematoxylin-eosin, the second section was stained with Masson's Trichrome and the remaining eight sections were available for immunolabelling of the macrophages.Results: The chronic study went uneventful. No clinical infection or pain was observed. The computer registered no specific failure in ring function, Nitinol wires and tube connectors. At explantation, except for a slight grade of lymphocytes in two out of eight specimens, no urethral stricture or atrophy could be observed. Immunohistochemistry confirmed the absence of macrophages. Tissue structure and organization of the urethra with and without artificial sphincter were similar. No migration of the device was observed.Conclusions: The study clearly showed no tissue damage or inflammation of the urethra. Electronic design, preservation of urethral vascularisation and adjustability after implantation are the key ideas to improve the actual AUS. Further studies will be carried out to evaluate this potential.
Resumo:
Background: Providing analgesia without suppressing motor or sensory function is a challenge for regional anesthesia and postoperative pain management. Resiniferatoxin (RTX), an ultrapotent agonist for transient receptor potential subtype-1 (TRPV1) can produce this selective blockade, as TRPV1 is selectively expressed on nociceptors. Futhermore, after peripheral nerve injury, spontaneous ectopic activity arises from all types of nerve fibers that can affect spinal neurons and glial cells. The goal of the present experiment is to determine whether spontaneous activity generated in C-fibers or in both A&C-fibers is required for microglia activation. Method: We applied RTX (0.01%) or bupivacaine microspheres to the sciatic nerve of rats to block the conduction of C-fibers or A&C-fibers, respectively, before spared nerve injury (SNI). Behavior was tested and all the rats were sacrificed 2 days later; immunohistochemistry was performed on their spinal cord for mitogen-activated protein kinase (MAPK) p38, bromodeoxyuridine (BrdU, marker of proliferation) and Iba1 (microglial marker). Result: At day 2 after SNI robust mechanical allodynia and p38 activation in spinal microglia were documented. There was also a substantial cell proliferation in the spinal cord, all proliferating cells (BrdU+) being microglia (Iba1+). RTX blocked heat sensitivity and produced heat hypoalgesia without affecting mechanical allodynia and motor function. Microglial proliferation and p38 activation in the spinal cord were not affected by RTX (p >0.05). In contrast, a complete sensory and motor blockade was seen with bupivacaine which also significantly inhibited p38 activation and microglial proliferation in the spinal cord (p <0.05). Conclusion: We conclude that (1) RTX can provide a selective nociceptive blockade but that (2) blocking only nociceptive fibers does not impair the development of mechanical allodynia and microglia activation. Therefore (3) if microglia activation is important for chronic pain development then specific nociceptive blockade won't be sufficient to prevent it.