863 resultados para Jeremy Bentham
Resumo:
Coffee is a relatively rich source of chlorogenic acids (CGA), which, like other polyphenols are postulated to exert preventative effects against cardiovascular disease and type-2 diabetes. As a considerable proportion of ingested CGA reaches the large intestine, CGA may be capable of exerting beneficial effects in the large gut. Here we utilise a stirred, anaerobic, pH controlled, batch culture fermentation model of the distal region of the colon in order to investigate the impact of coffee and CGA on the growth of the human faecal microbiota. Incubation of the coffee with the human faecal microbiota led to the rapid metabolism of CGA (4h) and the production of dihydrocaffeic acid and dihydroferulic acid, whilst caffeine remained un-metabolised. The coffee with the highest levels of CGA (p<0.05, relative to the other coffees) induced a significant increase in Bifidobacterium spp. relative to the control at 10 hours post exposure (p<0.05). Similarly, an equivalent quantity of CGA (80.8mg; matched with that in high CGA coffee) induced a significant increase in Bifidobacterium spp. (p<0.05). CGA alone also induced a significant increase in the Clostridium coccoides-Eubacterium rectale group (p<0.05). This selective metabolism and subsequent amplification of specific bacterial populations could be beneficial to host health.
Resumo:
Background: Research indicates that chronic consumption of flavonoids is associated with cognitive benefits in adults with mild cognitive impairment and neurodegenerative disease, although, there has been no such studies in healthy older adults. Furthermore, the effects of commonly consumed orange juice flavanones on cognitive function remain unexplored. Objective: To investigate whether eight weeks of daily flavanone-rich orange juice consumption was beneficial for cognitive function in healthy older adults. Design: High flavanone (HF: 305mg) 100% orange juice and equicaloric low flavanone (LF: 37mg) orange flavored cordial (500ml) were consumed daily for eight weeks by thirty seven healthy older adults (mean age 67 years) according to a crossover, double blind, randomized design separated by a four week washout. Cognitive function, mood and blood pressure were assessed at baseline and follow up with standardized validated tests. Results: Global cognitive function was significantly better following eight week consumption of flavanone-rich juice relative to eight week consumption of the low flavanone control. No significant effects on mood or blood pressure were observed. Conclusions: Chronic daily consumption of flavanone-rich 100% orange juice over eight weeks is beneficial for cognitive function in healthy older adults. The potential for flavanone-rich foods and drinks to attenuate cognitive decline in ageing and the mechanisms which underlie these effects should be investigated.
Resumo:
Background: Dietary intervention studies suggest that flavan-3-ol intake can improve vascular function and reduce the risk of cardiovascular diseases (CVD). However, results from prospective studies failed to show a consistent beneficial effect. Objective: To investigate associations between flavan-3-ol intake and CVD risk in the Norfolk arm of the European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk). Design: Data was available from 24,885 (11,252 men; 13,633 women) participants, recruited between 1993 and 1997 into the EPIC-Norfolk study. Flavan-3-ol intake was assessed using 7-day food diaries and the FLAVIOLA Flavanol Food Composition database. Missing data for plasma cholesterol and vitamin C were imputed using multiple imputation. Associations between flavan-3-ol intake and blood pressure at baseline were determined using linear regression models. Associations with CVD risk were estimated using Cox regression analyses. Results: Median intake of total flavan-3-ols was 1034 mg/d (range: 0 – 8531 mg/d) for men and 970 mg/d (0 – 6695 mg/d) for women, median intake of flavan-3-ol monomers was 233 mg/d (0 – 3248 mg/d) for men and 217 (0 – 2712 mg/d) for women. There were no consistent associations between flavan-3-ol monomer intake and baseline systolic and diastolic blood pressure (BP). After 286,147 person-years of follow up, there were 8463 cardio-vascular events and 1987 CVD related deaths; no consistent association between flavan-3-ol intake and CVD risk (HR 0.93, 95% CI:0.87; 1.00; Q1 vs Q5) or mortality was observed (HR 0.93, 95% CI: 0.84; 1.04). Conclusions: Flavan-3-ol intake in EPIC-Norfolk is not sufficient to achieve a statistically significant reduction in CVD risk.
Resumo:
Increased vascular stiffness, endothelial dysfunction, and isolated systolic hypertension are hallmarks of vascular aging. Regular cocoa flavanol (CF) intake can improve vascular function in healthy young and elderly at-risk individuals. However, the mechanisms underlying CF bioactivity remain largely unknown. We investigated the effects of CF intake on cardiovascular function in healthy young and elderly individuals without history, signs, or symptoms of cardiovascular disease by applying particular focus on functional endpoints relevant to cardiovascular aging. In a randomized, controlled, double-masked, parallel-group dietary intervention trial, 22 young (<35yrs) and 20 elderly (50-80yrs) healthy, male non- smokers consumed either a CF-containing drink (450mg CF) or nutrient-matched, CF-free control drink bi-daily for 14 days. The primary endpoint was endothelial function as measured by flow-mediated vasodilation (FMD). Secondary endpoints included cardiac output, vascular stiffness, conductance of conduit and resistance arteries, and perfusion in the microcirculation. Following 2 weeks of CF intake, FMD improved in young (6.1±0.7% vs. 7.6±0.7%, p<0.001) and elderly (4.9±0.6% vs. 6.3±0.9%, p<0.001). Secondary outcomes demonstrated in both groups that CF intake decreased pulse wave velocity and lowered total peripheral resistance, increased arteriolar- and microvascular vasodilator capacity, red cell deformability, and diastolic blood pressure, while cardiac output remained affected. In the elderly, baseline systolic blood pressure was elevated, driven by an arterial stiffness-related augmentation. CF intake decreased aortic augmentation index (-9%), and thus systolic blood pressure (-7mmHg). (Clinicaltrials.gov:NCT01639781) CF intake reverses age-related burden of cardiovascular risk in healthy elderly, highlighting the potential of dietary flavanols to maintain cardiovascular health.
Resumo:
Rationale: There has recently been increasing interest in the potential of flavanols, plant derived compounds found in foods such as fruit and vegetables, to ameliorate age-related cognitive decline. Research suggests that cocoa flavanols improve memory and learning, possibly as a result of their anti-inflammatory and neuroprotective effects. These effects may be mediated by increased cerebral blood flow (CBF), thus stimulating neuronal function. Objectives: The present study employed arterial spin labelling (ASL) functional magnetic resonance imaging (FMRI) to explore the effect of a single acute dose of cocoa flavanols on regional CBF. Methods: CBF was measured pre and post consumption of low (23mg) or high (494mg) 330ml equicaloric flavanol drinks matched for caffeine, theobromine, taste and appearance according to a randomised counterbalanced crossover double-blind design in eight males and ten females, aged 50-65 years. Changes in perfusion from pre to post consumption were calculated as a function of each drink. Results: Significant increases in regional perfusion across the brain were observed following consumption of the high flavanol drink relative to the low flavanol drink, particularly in the anterior cingulate cortex (ACC) and the central opercular cortex of the parietal lobe. Conclusions: Consumption of cocoa flavanol improves regional cerebral perfusion in older adults. This provides evidence for a possible acute mechanism by which cocoa flavanols are associated with benefits for cognitive performance.
Resumo:
Background Flavonoids are a group of phenolic secondary plant metabolites that are ubiquitous in plant-based diets. Data from anthropological, observational and intervention studies have shown that many flavonoids are bioactive. For this reason, there is an increasing interest in investigating the potential health effects of these compounds. The translation of these findings into the context of the health of the general public requires detailed information on habitual dietary intake. However, only limited data are currently available for European populations. Objective The objective of this study is to determine the habitual intake and main sources of anthocyanidins, flavanols, flavanones, flavones, flavonols, proanthocyanidins, theaflavins and thearubigins in the European Union. Design We use food consumption data from the European Food Safety Authority (EFSA) and the FLAVIOLA Food Composition Database to estimate intake of flavonoids. Results Mean (±SEM) intake of total flavonoids in Europe was 428±49 mg/d, of which 136±14 mg/d were monomeric compounds. Gallated flavan-3-ols (53±12 mg/d) were the main contributor. The lowest flavonoid intake was observed in Mediterranean countries (monomeric compounds: 95±11 mg/d). The distribution of intake was skewed in many countries, especially in Germany (monomeric flavonoids; mean intake: 181 mg/d; median intake: 3 mg/d). Conclusions The habitual intake of flavonoids in Europe is below the amounts found to have a significant health effect.
Resumo:
A sample of caecal effluent was obtained from a female patient who had undergone a routine colonoscopic examination. Bacteria were isolated anaerobically from the sample, and screened against the remaining filtered caecal effluent in an attempt to isolate bacteriophages (phages). A lytic phage, named KLPN1, was isolated on a strain identified as Klebsiella pneumoniae subsp. pneumoniae (capsular type K2, rmpA+). This Siphoviridae phage presents a rosette-like tail tip and exhibits depolymerase activity, as demonstrated by the formation of plaque-surrounding haloes that increased in size over the course of incubation. When screened against a panel of clinical isolates of K. pneumoniae subsp. pneumoniae, phage KLPN1 was shown to infect and lyse capsular type K2 strains, though it did not exhibit depolymerase activity on such hosts. The genome of KLPN1 was determined to be 49,037 bp (50.53 %GC) in length, encompassing 73 predicted ORFs, of which 23 represented genes associated with structure, host recognition, packaging, DNA replication and cell lysis. On the basis of sequence analyses, phages KLPN1 (GenBank: KR262148) and 1513 (a member of the family Siphoviridae, GenBank: KP658157) were found to be two new members of the genus “Kp36likevirus”.
Resumo:
The postnatal environment, including factors such as weaning and acquisition of the gut microbiota, has been causally linked to the development of later immunological diseases such as allergy and autoimmunity, and has also been associated with a predisposition to metabolic disorders. We show that the very early-life environment influences the development of both the gut microbiota and host metabolic phenotype in a porcine model of human infants. Farmpiglets were nursed by their mothers for 1 day, before removal to highly controlled, individual isolators where they received formula milk until weaning at 21 days. The experiment was repeated, to create two batches, which differed only in minor environmental fluctuations during the first day. At day 1 after birth, metabolic profiling of serum by 1H nuclear magnetic resonance spectroscopy demonstrated significant, systemic, inter-batch variation which persisted until weaning. However, the urinary metabolic profiles demonstrated that significant inter-batch effects on 3-hydroxyisovalerate, trimethylamine-N-oxide and mannitol persisted beyond weaning to at least 35 days. Batch effects were linked to significant differences in the composition of colonic microbiota at 35 days, determined by 16 S pyrosequencing. Different weaning diets modulated both the microbiota and metabolic phenotype independently of the persistent batch effects. We demonstrate that the environment during the first day of life influences development of the microbiota and metabolic phenotype and thus should be taken into account when interrogating experimental outcomes. In addition, we suggest that intervention at this early time could provide ‘metabolic rescue’ for at-risk infants who have undergone aberrant patterns of initial intestinal colonisation.
Resumo:
The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.
Resumo:
We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.
Resumo:
Purpose: Epidemiological evidence suggests that chronic consumption of fruit based flavonoids is associated with cognitive benefits, however, the acute effects of flavonoid rich drinks on cognitive function in the immediate postprandial period requires examination. The objective was to investigate whether consumption of flavonoid rich orange juice is associated with acute cognitive benefits over six hours in healthy middle-aged adults. Methods: Males aged 30-65 consumed a 240ml flavonoid rich (FR) orange juice (272mg) and a calorie matched placebo in a randomized, double-blind, counterbalanced order on two days separated by a two week washout. Cognitive function and subjective mood were assessed at baseline (prior to drink consumption) and 2hrs and 6hrs post consumption. The cognitive battery included eight individual cognitive tests. A standardized breakfast was consumed prior to the baseline measures, and a standardized lunch was consumed 3hrs post drink consumption. Results: Change from baseline analysis revealed that performance on tests of executive function and psychomotor speed was significantly better following the FR drink compared to the placebo. The effects for objective cognitive function were supported by significant benefits for subjective alertness following the FR drink relative to the placebo. Conclusions: These data demonstrate that consumption of flavonoid rich orange juice can acutely enhance objective and subjective cognition over the course of six hours in healthy middle-aged adults.
Resumo:
The fat mass and obesity-associated (FTO) gene plays a pivotal role in regulating body weight and fat mass; however, the underlying mechanisms are poorly understood. Here we show that primary adipocytes and mouse embryonic fibroblasts (MEFs) derived from FTO overexpression (FTO-4) mice exhibit increased potential for adipogenic differentiation, while MEFs derived from FTO knockout (FTO-KO) mice show reduced adipogenesis. As predicted from these findings, fat pads from FTO-4 mice fed a high-fat diet show more numerous adipocytes. FTO influences adipogenesis by regulating events early in adipogenesis, during the process of mitotic clonal expansion. The effect of FTO on adipogenesis appears to be mediated via enhanced expression of the pro-adipogenic short isoform of RUNX1T1, which enhanced adipocyte proliferation, and is increased in FTO-4 MEFs and reduced in FTO-KO MEFs. Our findings provide novel mechanistic insight into how upregulation of FTO leads to obesity.
Resumo:
The reported inverse association between the intake of plant-based foods and a reduction in the prevalence of colorectal cancer may be partly mediated by interactions between insoluble fibre and (poly)phenols and the intestinal microbiota. In the present study, we assessed the impact of palm date consumption, rich in both polyphenols and fibre, on the growth of colonic microbiota and markers of colon cancer risk in a randomised, controlled, cross-over human intervention study. A total of twenty-two healthy human volunteers were randomly assigned to either a control group (maltodextrin-dextrose, 37·1 g) or an intervention group (seven dates, approximately 50 g). Each arm was of 21 d duration and was separated by a 14-d washout period in a cross-over manner. Changes in the growth of microbiota were assessed by fluorescence in situ hybridisation analysis, whereas SCFA levels were assessed using HPLC. Further, ammonia concentrations, faecal water genotoxicity and anti-proliferation ability were also assessed using different assays, which included cell work and the Comet assay. Accordingly, dietary intakes, anthropometric measurements and bowel movement assessment were also carried out. Although the consumption of dates did not induce significant changes in the growth of select bacterial groups or SCFA, there were significant increases in bowel movements and stool frequency (P<0·01; n 21) and significant reductions in stool ammonia concentration (P<0·05; n 21) after consumption of dates, relative to baseline. Furthermore, date fruit intake significantly reduced genotoxicity in human faecal water relative to control (P<0·01; n 21). Our data indicate that consumption of date fruit may reduce colon cancer risk without inducing changes in the microbiota.
Resumo:
Cocoa flavanol (CF) intake improves endothelial function in patients with cardiovascular risk factors and disease. We investigated the effects of CF on surrogate markers of cardiovascular health in low risk, healthy, middle-aged individuals without history, signs or symptoms of CVD. In a 1-month, open-label, one-armed pilot study, bi-daily ingestion of 450 mg of CF led to a time-dependent increase in endothelial function (measured as flow-mediated vasodilation (FMD)) that plateaued after 2 weeks. Subsequently, in a randomised, controlled, double-masked, parallel-group dietary intervention trial (Clinicaltrials.gov: NCT01799005), 100 healthy, middle-aged (35–60 years) men and women consumed either the CF-containing drink (450 mg) or a nutrient-matched CF-free control bi-daily for 1 month. The primary end point was FMD. Secondary end points included plasma lipids and blood pressure, thus enabling the calculation of Framingham Risk Scores and pulse wave velocity. At 1 month, CF increased FMD over control by 1·2 % (95 % CI 1·0, 1·4 %). CF decreased systolic and diastolic blood pressure by 4·4 mmHg (95 % CI 7·9, 0·9 mmHg) and 3·9 mmHg (95 % CI 6·7, 0·9 mmHg), pulse wave velocity by 0·4 m/s (95 % CI 0·8, 0·04 m/s), total cholesterol by 0·20 mmol/l (95 % CI 0·39, 0·01 mmol/l) and LDL-cholesterol by 0·17 mmol/l (95 % CI 0·32, 0·02 mmol/l), whereas HDL-cholesterol increased by 0·10 mmol/l (95 % CI 0·04, 0·17 mmol/l). By applying the Framingham Risk Score, CF predicted a significant lowering of 10-year risk for CHD, myocardial infarction, CVD, death from CHD and CVD. In healthy individuals, regular CF intake improved accredited cardiovascular surrogates of cardiovascular risk, demonstrating that dietary flavanols have the potential to maintain cardiovascular health even in low-risk subjects.
Resumo:
Endothelin A (ET(A)) transmembrane receptors predominate in rat cardiac myocytes. These are G protein-coupled receptors whose actions are mediated by the G(q) heterotrimeric G proteins. Through these, ET-1 binding to ET(A)-receptors stimulates the hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to diacylglycerol and inositol 1,4,5-trisphosphate. Diacylglycerol remains in the membrane whereas inositol 1,4,5-trisphosphate is soluble (though its importance in the cardiac myocyte is still debated). Isoforms of the phospholipid-dependent protein kinase, protein kinase C (PKC), are intracellular receptors for diacylglycerol. Cytoplasmic nPKCdelta and nPKCepsilon detect increases in membrane diacylglycerols and translocate to the membrane. This brings about PKC activation, though modifications additional to binding to phospholipids and diacylglycerol are involved. The next event (probably associated with PKC activation) is the activation of the membrane-bound small G protein Ras by exchange of GTP for GDP. Ras.GTP loading translocates Raf family mitogen-activated protein kinase (MAPK) kinase kinases to the membrane, initiates the activation of Raf, and thus activates the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade. Over longer times, two analogous protein kinase cascades, the c-Jun N-terminal kinase and p38-mitogen-activated protein kinase cascades, become activated. As the signals originating from the ET(A) receptor are transmitted through these protein kinase pathways, other signalling molecules become phosphorylated, thus changing their biological activities. For example, ET-1 increases the expression of the c-jun transcription factor gene, and increases abundance and phosphorylation of c-Jun protein. These changes in c-Jun expression and phosphorylation are likely to be important in the regulation of gene transcription.