977 resultados para Irradiation embrittlement


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reviews the recent research on ion and UV irradiation of β-

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New advances are being incorporated into the radiochemotherapy treatment of squamous cell carcinoma of the head and neck. Although the overall prognosis is poor in advanced stages, the possibility of incorporating combined protocols of chemotherapy and radiotherapy for organ preservation or for palliation in cases of recurrent/locally advanced stages that are not good surgical candidates must not be forgotten. In this context, there is an urgent need to incorporate quality of life questionnaires and functional evaluation into organ-preservation studies, as well as to assure the importance of surgical salvage after radiotherapy and chemotherapy protocols. The authors provide an extensive review of the advances occurring in the nonsurgical treatment of head and neck cancer. Special attention is given to different radiotherapy protocols, new chemotherapy combinations, molecular markers, and molecular therapy as well as the possibility of incorporating re-irradiation and adjuvant therapy after surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Injectable biomaterials with in situ cross-linking reactions have been suggested to minimize the invasiveness associated with most implantation procedures. However, problems related with the rapid liquid-to-gel transition reaction can arise because it is difficult to predict the reliability of the reaction and its end products, as well as to mitigate cytotoxicity to the surrounding tissues. An alternative minimally invasive approach to deliver solid implants in vivo is based on injectable microparticles, which can be processed in vitro with high fidelity and reliability, while showing low cytotoxicity. Their delivery to the defect can be performed by injection through a small diameter syringe needle. We present a new methodology for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photo-reactive PEG-fibrinogen (PF) polymer was transported through a transparent injector exposed to light-irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data provided the cross-linking kinetics of each PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture prior to atomization. The partially polymerized drops fell into a gelation bath for further polymerization. The system was capable of producing cell-laden microparticles with high cellular viability, with an average diameter of between 88.1 µm to 347.1 µm and a dispersity of between 1.1 and 2.4, depending on the parameters chosen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramente em Ciências (área de especialização em Química).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The free volume holes of a shape memory polymer have been analysed considering that the empty space between molecules is necessary for the molecular motion, and the shape memory response is based on polymer segments acting as molecular switches through variable flexibility with temperature or other stimuli. Therefore, thermomechanical analysis (TMA) and positron annihilation lifetime spectroscopy (PALS) have been applied to analyse shape recovery and free volume hole sizes in gamma irradiated polycyclooctene (PCO) samples, as a non-cytotoxic alternative to more conventional PCO crosslinked via peroxide for future applications in medicine. Thus, a first approach relating structure, free volume holes and shape memory properties in gamma irradiated PCO is presented. The results suggest that free volume holes caused by gamma irradiation in PCO samples facilitate the recovery process by improving movement of polymer chains and open t possibilities for the design and control of the macroscopic response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1wt.% of 2,5 dipheniloxazol (PPO) and 0.01wt.% of (1,4-bis(2-(5-phenioxazolil))-benzol (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e. the measured intensity of the output visible radiation, under X-ray irradiation. Whereas increasing scintillator filler concentration (from 0.25wt.% to 7.5wt.%) increases scintillator light yield, decreases the optical transparency of the composite. The addition of PPO and POPOP, strongly increased the overall 2 transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites in 0.25 wt.% of scintillator content with fluorescence molecules is suitable for the development of innovate large area X-ray radiation detectors with huge demand from the industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evaluation of the photorelease of a carboxylic acid drug, using butyric acid as a representative model, was carried out by using 7-amino-4-chloromethyl-2-oxo-2Hnaphtho[1,2-b] pyran, an aminobenzocoumarin, and its mono- and di-methylated or ethylated derivatives. This study was intended to improve the release of butyric acid from benzocoumarins by the addition of an amino group to the heterocycle by applying the knowledge of second-generation coumarinylmethyl-based photoremovable protecting groups. Photolysis studies were performed on the resultant ester cages by irradiation in a photochemical reactor at 254, 300, 350 and 419 nm, using methanol/HEPES buffer 80:20 solutions as solvent. The data obtained showed that these new fluorescent aminobenzocoumarins are superior to all the previously tested benzocoumarins with the same or different ring fusions. As well as the photolysis, the photophysics of the compounds were characterised by both steady state and time-resolved methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new benzocoumarin bearing an amino group is proposed as a photocleavable protecting group for carboxylic acids. The novel heterocycle, 6-amino-4-chloromethyl-2-oxo-2H-naphtho[1,2-b]pyran was used in the preparation of ester conjugates of butyric acid, and of the corresponding mono- and di-methylated or ethylated derivatives. The photolability of the ester conjugates was studied by irradiation at selected wavelengths in methanol/HEPES buffer (80:20) solutions, and the release of butyric acid was followed with HPLC/UV and 1H NMR monitoring. Release of the carboxylic acid was faster for the monoalkylated derivatives (approximately within 20 min), at the longer wavelengths of irradiation (350 and 419 nm). The photophysics of the heterocyclic conjugates was also evaluated by both steady state and time-resolved methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biomedicina)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Química Medicinal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IDENTIFICACIÓN DEL PROBLEMA DE ESTUDIO. Las sustancias orgánicas solubles en agua no biodegradables tales como ciertos herbicidas, colorantes industriales y metabolitos de fármacos de uso masivo son una de las principales fuentes de contaminación en aguas subterráneas de zonas agrícolas y en efluentes industriales y domésticos. Las reacciones fotocatalizadas por irradiación UV-visible y sensitizadores orgánicos e inorgánicos son uno de los métodos más económicos y convenientes para la descomposición de contaminantes en subproductos inocuos y/o biodegradables. En muchas aplicaciones es deseable un alto grado de especificidad, efectividad y velocidad de degradación de un dado agente contaminante que se encuentra presente en una mezcla compleja de sustancias orgánicas en solución. En particular son altamente deseables sistemas nano/micro -particulados que formen suspensiones acuosas estables debido a que estas permiten una fácil aplicación y una eficaz acción descontaminante en grandes volúmenes de fluidos. HIPÓTESIS Y PLANTEO DE LOS OBJETIVOS. El objetivo general de este proyecto es desarrollar sistemas nano/micro particulados formados por polímeros de impresión molecular (PIMs) y foto-sensibilizadores (FS). Un PIMs es un polímero especialmente sintetizado para que sea capaz de reconocer específicamente un analito (molécula plantilla) determinado. La actividad de unión específica de los PIMs en conjunto con la capacidad fotocatalizadora de los sensibilizadores pueden ser usadas para lograr la fotodescomposición específica de moléculas “plantilla” (en este caso un dado contaminante) en soluciones conteniendo mezclas complejas de sustancias orgánicas. MATERIALES Y MÉTODOS A UTILIZAR. Se utilizaran técnicas de polimerización en mini-emulsión para sintetizar los sistemas nano/micro PIM-FS para buscar la degradación de ciertos compuestos de interés. Para caracterizar eficiencias, mecanismos y especificidad de foto-degradación en dichos sistemas se utilizan diversas técnicas espectroscópicas (estacionarias y resueltas en el tiempo) y de cromatografía (HPLC y GC). Así mismo, para medir directamente distribuciones de afinidades de unión y eficiencia de foto-degradación se utilizaran técnicas de fluorescencia de molécula/partícula individual. Estas determinaciones permitirán obtener resultados importantes al momento de analizar los factores que afectan la eficiencia de foto-degradación (nano/micro escala), tales como cantidad y ubicación de foto- sensibilizadores en las matrices poliméricas y eficiencia de unión de la plantilla y los productos de degradación al PIM. RESULTADOS ESPERADOS. Los estudios propuestos apuntan a un mejor entendimiento de procesos foto-iniciados en entornos nano/micro-particulados para aplicar dichos conocimientos al diseño de sistemas optimizados para la foto-destrucción selectiva de contaminantes acuosos de relevancia social; tales como herbicidas, residuos industriales, metabolitos de fármacos de uso masivo, etc. IMPORTANCIA DEL PROYECTO. Los sistemas nano/micro-particulados PIM-FS que se propone desarrollar en este proyecto se presentan como candidatos ideales para tratamientos específicos de efluentes industriales y domésticos en los cuales se desea lograr la degradación selectiva de compuestos orgánicos. Los conocimientos adquiridos serán indispensables para construir una plataforma versátil de sistemas foto-catalíticos específicos para la degradación de diversos contaminantes orgánicos de interés social. En lo referente a la formación de recursos humanos, el proyecto propuesto contribuirá en forma directa a la formación de 3 estudiantes de postgrado y 2 estudiantes de grado. En las capacidades institucionales se contribuirá al acondicionamiento del Laboratorio para Microscopía Óptica Avanzada (LMOA) en el Dpto. de Química de la UNRC y al montaje de un sistema de microscopio de fluorescencia que permitirá la aplicación de técnicas avanzadas de espectroscopia de fluorescencia de molecula individual. Water-soluble organic molecules such as certain non-biodegradable herbicides, industrial dyes and metabolites of widespread use drugs are a major source of pollution in groundwater from agricultural areas and in industrial and domestic effluents. Photo-catalytic reactions by UV-visible irradiation and organic sensitizers are one of the most economical and convenient methods for the decomposition of pollutants into harmless byproducts. In many applications it is highly desirable a high degree of specificity, effectiveness and speed of degradation of specific pollutants present in a complex mixture. In particular nano/micro-particles systems that form stable aqueous suspensions are highly desirable because they allow for easy application and effective decontamination of large volumes of fluids. Herein we propose the development of nano/micro particles composed by molecularly imprinted polymers (MIP) and photo-sensitizers (PS). The specific binding of MIP and the photo-catalytic ability of the sensitizers are used to achieve the photo-decomposition of specific "template" molecules in complex mixtures. Mini-emulsion polymerization techniques will be used to synthesize nano/micro MIP-FS systems. Spectroscopy (steady-state and time resolved) and chromatography (GC and HPLC) will be used to characterize efficiency, mechanisms and specificity of photo-degradation in these systems. In addition single molecule/particle fluorescence spectroscopy techniques will be used to directly measure distributions of binding affinities and photo-degradation efficiency in individual particles. The proposed studies point to a more detailed understanding of the factors affecting the photo-degradation efficiency in nano/micro-particles and to apply that knowledge in the design of optimized systems for photo-selective destruction of socially relevant aqueous pollutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study has been undertaken of the published literature on the Fries rearrangement, thermal, photo and microwave, since its discovery in 1908. A resume of these publications and especially of those pertaining to the thia-Fries rearrangement of sulfamate esters, has been compiled. Phenyl sulfamate, phenyl N,N-dimethylsulfamate, phenyl N,N-diethylsulfamate and phenyl N,N-di-n-propylsulfamate and many of their substituted compounds have been synthesised and purified, a total of thirty nine esters. The sulfamates have been characterised by mp / bp, infrared, C, H and N microanalysis and mass spectrum. Many of these sulfamates, twenty six in total, have been rearranged to sulfonamides in the thia-Fries rearrangement, and subsequently purified. The products were characterised by mp / bp, infrared, C, H and N microanalysis and mass spectrum. Mechanistic studies of the sulfamates have been investigated, particularly phenyl N,N-dimethylsulfamate. The rearrangement with various catalysts and catalytic ratios, the effect of solvents on the rearrangement and many crossover experiments have been carried out to determine the molecularity i.e. whether it is an inter-, intra- or bimolecular reaction. The microwave induced thia-Fries rearrangement has been examined to determine what effect this irradiation has on the rearrangement. Photo thia-Fries rearrangement has also been investigated.