986 resultados para Iron Metabolism
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Resumo:
This work investigates the adsorption of Alizarin, Eriochrome Blue Black R and Fluorescein using chitosan, goethite and magnetite as adsorbents. For Alizarin, the best adsorbent is chitosan with a Langmuir parameter of 15.8 mmol dye/g adsorbent. For Eriochrome Blue Black R only 1.94 mmol dye/g chitosan is adsorbed. Langmuir parameters for the Alizarin adsorption on both iron oxides display one or two orders of magnitude lower than for chitosan and two orders of magnitude lower in the case of Eriochrome Blue Black R. Fluorescein does not adsorb in appreciable amounts on chitosan and it presents the lower affinity on the iron oxides.
Resumo:
A new sensitive and selective procedure for speciation of trace dissolved Fe(III) and Fe(II), using modified octadecyl silica membrane disks and determination by flame atomic absorption spectrometry was developed. A ML3 complex is formed between the ligand and Fe(III) responsible for extraction of metal ion on the disk. Various factors influencing the separation of iron were investigated and the optimized operation conditions were established. Under optimum conditions, an enrichment factor of 166 was obtained for Fe3+ ions. The calibration graph using the preconcentration system for Fe3+ was linear between 40.0 and 1000.0 μg L-1.
Resumo:
Four new compounds with the general formula [Fe(phen)3][Zn(RSO2N=CS2)2], where phen = 1,10-phenanthroline, R = 4-FC6H4 (1), 4-ClC6H4 (2), 4-BrC6H4 (3) and 4-IC6H4 (4), respectively, were obtained by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate (RSO2N=CS2K2) and tris(1,10-phenanthroline)iron(II) sulfate, with zinc(II) acetate dihydrate in dimethylformamide. The elemental analyses and the IR data were consistent with the formation of the expected complexes salts. The ¹H and 13C NMR spectra showed the signals for the cationic iron(II) complex and dithiocarbimate moieties. The molar conductance data were consistent with the 1:1 cation:anion complexes in 1-4. The antifungal activities of the compounds were tested in vitro against Candida albicans, Candida tropicalis and Colletotrichum gloeosporioides.
Resumo:
The viability of small-scale heavy-metal waste immobilization into iron phosphate glasses was investigated. Several waste forms containing different amounts of heavy-ion wastes were evaluated (5%, 10%, 15%, 20%, 26%, 33%, 40% and 50% by mass) and their X-ray diffraction patterns revealed that no crystallization occurred in glasses with waste concentrations up to 26%. The dissolution rates for all of the reported glass compositions (ca. 10-8 g cm-2 min-1) are similar to those reported for the materials most commonly used for waste vitrification. Iron phosphate glasses thus proved to be very useful for the immobilization of heavy-metal wastes, exhibiting good contention and chemical durability comparable to that of borosilicate glasses.
Resumo:
This study investigated the reductive degradation of acetamiprid (5 mg L-1) in aqueous medium (at pH 2.0) induced by zero-valent iron (50 mg). The process was monitored using high-performance liquid chromatography (HPLC) to determine the degradation rate as a function of reaction time, and direct infusion electrospray ionization mass spectrometry (DI-ESI-MS) to search for (and potentially characterize) any possible byproducts formed during degradation. The results obtained via HPLC showed that after 60 min, the degradation of the substrate reached nearly 100% in an acidic medium, whereas the mineralization rate (as determined by total organic carbon measurements) was as low as 3%. Data obtained by DI-ESI-MS showed that byproducts were formed mainly by insertions of hydrogen atoms into the nitrile, imine, and pyridine ring moieties, in addition to the observation of chlorine substitution by hydrogen replacement (hydrodechlorination) reactions.
Resumo:
The calcified tissues, comprising bone and cartilage, are metabolically active tissues that bind and release calcium, bicarbonate and other substances according to systemic needs. Understanding the regulation of cellular metabolism in bone and cartilage is an important issue, since a link between the metabolism and diseases of these tissues is clear. An essential element in the function of bone-resorbing osteoclasts, namely regulation of bicarbonate transport, has not yet been thoroughly studied. Another example of an important but at the same time fairly unexplored subject of interest in this field is cartilage degeneration, an important determinant for development of osteoarthritis. The link between this and oxidative metabolism has rarely been studied. In this study, we have investigated the significance of bicarbonate transport in osteoclasts. We found that osteoclasts possess several potential proteins for bicarbonate transport, including carbonic anhydrase IV and XIV, and an electroneutral bicarbonate co-transporter NBCn1. We have also shown that inhibiting the function of these proteins has a significant impact on bone resorption and osteoclast morphology. Furthermore, we have explored oxidative metabolism in chondrocytes and found that carbonic anhydrase III (CA III), a protein linked to the prevention of protein oxidation in muscle cells, is also present in mouse chondrocytes, where its expression correlates with the presence of reactive oxygen species. Thus, our study provides novel information on the regulation of cellular metabolism in calcified tissues.
Resumo:
Silica gel chemically modified with 2-Aminotiazole groups, abbreviated as SiAT, was used for preconcentration of copper, zinc, nickel and iron from kerosene, normally used as a engine fuel for airplanes. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl- 0.25-2.00 mol L-1) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for copper, iron, nickel and zinc are 0.77, 2.92, 1.73 and 0.097 mg L-1, respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in kerosene using flame AAS for their quantification.
Resumo:
The possibility of using thiocyanate to determine iron(II) and/or iron(III) in water-acetone mixture has been re-examined as part of a systematic and comparative study involving metallic complexes of pseudohalide ligands. Some parameters that affect the complete oxidation of the ferrous cations, their subsequent complexation and the system stability have been studied to optimize the experimental conditions. Our results show the viability and potentiality of this simply methodology as an alternative analytical procedure to determine iron cations with high sensitivity, precision and accuracy. Studies on the calibration, stability, precision, and effect of various different ions have been carried out by using absorbance values measured at 480 nm. The analytical curve for the total iron determination obeys Beer's law (r = 0.9993), showing a higher sensitivity (molar absorptivity of 2.10x10(4) L cm-1 mol-1) when compared with other traditional systems (ligands) or even with the "similar" azide ion [1.53x10(4) L cm-1 mol-1, for iron-III/azide complexes, in 70% (v/v) tetrahydrofuran/water, at 396 nm]. Under such optimized experimental conditions, it is possible to determine iron in the concentration range from 0.5 to 2 ppm (15-65% T for older equipments, quartz cells of 1.00 cm). Analytical applications have been tested for some different materials (iron ores), also including pharmaceutical products for anemia, and results were compared with atomic absorption determinations. Very good agreement was obtained with these two different techniques, showing the potential of the present experimental conditions for the total iron spectrophotometric determinations (errors < 5%). The possibility of iron speciation was made evident by using another specific and auxiliary method for iron(II) or (III).
Resumo:
An amperometric sensor was constructed, by using humic acids to immobilize Fe3+ ions on a carbon paste electrode (CPE-HA-Fe), and used for ascorbic acid (H2A) determination. The cyclic voltammogram of the electrode showed electrochemical response due to the Fe3+/Fe2+ couple at E1/2=+0.78 V vs SCE, using 0.5 mol L-1 KCl and 0.2 mol L-1 acetate/0.020 mol L-1 phosphate buffer, at pH = 5.4, as supporting electrolyte. When H2A is added to the electrolyte solution it is observed an oxidation process. The oxidation current, obtained by chronoamperommetry at +0.87 V vs SCE, is proportional to the concentration, represented by the equation I(µA) = 7.6286 [H2A] (mmol L-1) + 1.9583, r = 0.9996, for concentrations between 0.0 and 1.4 mmol L-1. The electrode showed high stability and was used for H2A determination in a natural orange juice.
Resumo:
Copolymers of methyl methacrylate (MMA) and triethyleneglycol dimethacrylate (TEGDMA) obtained by photoinitiated polymerization using Fe(III) complexes were submitted to thermogravimetry (TGA) under dynamic air atmosphere and N2, and differential scanning calorimetric analysis (DSC). Thermal events were observed only between 90 - 110 ºC. Glass transitions were observed at ca. 100 ºC, followed by an exothermic peak at 170 ºC. The exothermic peak was assigned to a thermal curing process due to the presence of unreacted vinyl groups of the monomers. DSC revealed to be a useful tool to evaluate the curing completeness in this kind of material, using small amounts of sample in relatively short time.
Resumo:
Direct leaching is an alternative to conventional roast-leach-electrowin (RLE) zinc production method. The basic reaction of direct leach method is the oxidation of sphalerite concentrate in acidic liquid by ferric iron. The reaction mechanism and kinetics, mass transfer and current modifications of zinc concentrate direct leaching process are considered. Particular attention is paid to the oxidation-reduction cycle of iron and its role in direct leaching of zinc concentrate, since it can be one of the limiting factors of the leaching process under certain conditions. The oxidation-reduction cycle of iron was experimentally studied with goal of gaining new knowledge for developing the direct leaching of zinc concentrate. In order to obtain this aim, ferrous iron oxidation experiments were carried out. Affect of such parameters as temperature, pressure, sulfuric acid concentration, ferrous iron and copper concentrations was studied. Based on the experimental results, mathematical model of the ferrous iron oxidation rate was developed. According to results obtained during the study, the reaction rate orders for ferrous iron concentration, oxygen concentration and copper concentration are 0.777, 0.652 and 0.0951 respectively. Values predicted by model were in good concordance with the experimental results. The reliability of estimated parameters was evaluated by MCMC analysis which showed good parameters reliability.
Resumo:
Oxycodone is an opioid used in the treatment of moderate or severe pain. It is principally metabolized in the liver by cytochrome P450 3A (CYP3A) enzymes whereas approximately 10% is metabolized by CYP2D6. Little is known about the interactions between oxycodone and other drugs, herbals and nutritional substances. In this work the effects of CYP3A inducers rifampicin and St. John’s wort and CYP3A inhibitors voriconazole, grapefruit juice, ritonavir and lopinavir/ritonavir were investigated on the pharmacokinetics and pharmacodynamics of oxycodone. All studies were randomized, balanced, placebo-controlled crossover clinical studies in healthy volunteers. The plasma concentrations of oxycodone and its metabolites were determined for 48 hours and pharmacodynamic parameters were recorded for 12 hours in each study. Pharmacokinetic parameters were calculated by noncompartmental methods. Rifampicin decreased the plasma concentrations, analgesic effects, and oral bioavailability of oral oxycodone. St. John’s wort reduced the concentrations of oxycodone and diminished the self-reported drug effect. Voriconazole increased the exposure to oral oxycodone by 3.6-fold whereas grapefruit juice, which inhibits predominantly the intestinal CYP3A, elevated the mean concentrations of oxycodone by 1.7-fold. Ritonavir and lopinavir/ritonavir increased the mean AUC of oxycodone by 3.0- and 2.6-fold, respectively, and prolonged its elimination half-life. In spite of increased oxycodone plasma concentrations during concomitant administration of CYP3A inhibitors, the analgesic effects were not increased. These studies show that the induction or inhibition of CYP3A alters the pharmacokinetics and pharmacologic effects of oxycodone. The exposure to oxycodone decreased after induction and increased after inhibition of CYP3A. As a conclusion, the clinicians should avoid concomitant administration of CYP3A inducers or inhibitors and oral oxycodone. If this is not possible, they should be prepared to interactions leading to impaired analgesia after CYP3A inducers or increased adverse effects after CYP3A inhibitors and oral oxycodone.
Resumo:
The prevalence of obesity and type 2 diabetes has increased at an alarming rate in developed countries. It seems in the light of current knowledge that metabolic syndrome may not develop at all without NAFLD, and NAFLD is estimated to be as common as metabolic syndrome in western population (23 % occurrence). Fat in the liver is called ectopic fat, which is triacylglycerols within the cells of non-adipose tissue. Serum alanine aminotransferase (ALT) values correlate positively with liver fat proportions, and increased activity of ALT predicts type 2 diabetes independently from obesity. Berries, high in natural bioactive compounds, have indicated the potential to reduce the risk of obesity-related diseases. Ectopic fat induces common endocrine excretion of adipose tissue resulting in the overproduction of inflammatory markers, which further induce insulin resistance by multiple mechanisms. Insulin resistance inducing hyperinsulinemia and lipolysis in adipocytes increases the concentration of free fatty acids and consequently causes further fat accumulation in hepatocytes. Polyphenolic fractions of berries have been shown to reverse inflammatory reaction cascades in in vitro and animal studies, and moreover to decrease ectopic fat accumulation. The aim of this thesis was to explore the role of northern berries in obesity-related diseases. The absorption and metabolism of selected berry polyphenols, flavonol glycosides and anthocyanins, was investigated in humans, and metabolites of the studied compounds were identified in plasma and urine samples (I, II). Further, the effects of berries on the risk factors of metabolic syndrome were studied in clinical intervention trials (III, IV), and the different fractions of sea buckthorn berry were tested for their ability to reduce postprandial glycemia and insulinemia after high-glucose meal in a postprandial study with humans (V). The marked impact of mixed berries on plasma ALT values (III), as well as indications of the positive effects of sea buckthorn, its fractions and bilberry on omental adiposity and adhesion molecules (IV) were observed. In study V, sea buckthorn and its polyphenol fractions had a promising effect on potprandial metabolism after high-glucose meal. In the literature review, the possible mechanisms behind the observed effects have been discussed with a special emphasis on ectopic fat accumulation. The literature review indicated that especially tannins and flavonoids have shown potential in suppressing diverse reaction cascades related to systemic inflammation, ectopic fat accumulation and insulin resistance development.
Resumo:
Magnetic nanoparticles are very important in modern industry. These particles are used in many different spheres of life. Nanoparticles have unusual physical and chemical properties connected both with quantum dimensional effects and with the increased role of the surface atoms. Most clearly the difference between the properties of bulk materials and nanoparticles can be seen in the magnetic properties of these materials. The most typical magnetic properties of nanomaterials are superparamagnetism with the size of the cluster from 1 to 10 nm; single-domain magnetic state of nanoclusters and nanostructures up to 20 nm; magnetization processes connected with magnetic cluster ordering and with its forms and sizes; quantum magnetic tunneling effects when magnetization changes by jumps and giant magnetoresistance effects. For research of the magnetic properties of iron-containing nanostructures, it is convenient to apply Mӧssbauer spectroscopy. In this work a number of nano-sized samples of iron oxides were examined by Mössbauer spectroscopy. The Mössbauer spectra of nanoparticles with various sizes were obtained. Mössbauer spectra of iron oxide nanoparticles were compared with the spectra of bulk samples. It was shown how the spectra of iron oxide nanoparticles change depending on the particle sizes.