988 resultados para Intraplate basaltic volcanism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present paleomagnetic data from basaltic pillow and lava flows drilled at four Ocean Drilling Program (ODP) Leg 192 sites through the Early Cretaceous (~120 Ma) Ontong Java Plateau (OJP). Altogether 270 samples (out of 331) yielded well-defined characteristic remanent magnetization components all of which have negative inclinations, i.e. normal polarity. Dividing data into inclination groups we obtain 5, 7, 14 and 15 independent inclination estimates for the four sites. Statistical analysis suggests that paleosecular variation has been sufficiently sampled and site-mean inclinations therefore represent time-averaged fields. Of particular importance is the finding that all four site-mean inclinations are statistically indistinguishable, strongly supporting indirect seismic observation from the flat-lying sediments blanketing the OJP that the studied basalts have suffered little or no tectonic disturbance since their emplacement. Moreover, the corresponding paleomagnetic paleolatitudes agree excellently with paleomagnetic data from a previous ODP site (Site 807) drilled into the northern portion of the OJP. Two important conclusions can be drawn based on the presented dataset: (i) the Leg 192 combined mean inclination (Inc.=-41.4°, N=41, kappa= 66.0, alpha95 =2.6°) is inconsistent with the Early Cretaceous part of the Pacific apparent polar wander path, indicating that previous paleomagnetic poles derived mainly from seamount magnetic anomaly modeling must be used with care; (ii) the Leg 192 paleomagnetic paleolatitude for the central OJP is ~20° north of the paleogeographic location calculated from Pacific hotspot tracks assuming the hotspots have remained fixed. The difference between paleomagnetic and hotspot calculated paleolatitudes cannot be explained by true polar wander estimates derived from other lithospheric plates and our results are therefore consistent with and extend recent paleomagnetic studies of younger hotspot features in the northern Pacific Ocean that suggest Late Cretaceous to Eocene motion of Pacific hotspots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An upper Aptian to middle Albian series of volcaniclastic rocks more than 300 m thick was drilled at Site 585 in the East Mariana Basin. On the basis of textural and compositional (bulk-rock chemistry, primary and secondary mineral phases) evidence, the volcaniclastic unit is subdivided into a lower (below 830 m sub-bottom) and an upper (about 670-760 m) sequence; the boundary in the interval between is uncertain owing to lack of samples. The rocks are dominantly former vitric basaltic tuffs and minor lapillistones with lesser amounts of crystals and basaltic lithic clasts. They are mixed with shallow-water carbonate debris (ooids, skeletal debris), and were transported by mass flows to their site of deposition. The lower sequence is mostly plagioclase- and olivine-phyric with lesser amounts of Ti-poor clinopyroxene. Mineralogical and bulk-rock chemical data indicate a tholeiitic composition slightly more enriched than N-MORB (normal mid-ocean ridge basalt). Transport was by debris flows from shallow-water sites, as indicated by admixed ooids. Volcanogenic particles are chiefly moderately vesicular to nonvesicular blocky shards (former sideromelane) and less angular tachylite with quench plagioclase and pyroxene, indicating generation of volcanic clasts predominantly by spalling and breakage of submarine pillow and/or sheet-flow lavas. The upper sequence is mainly clinopyroxene- and olivine-phyric with minor plagioclase. The more Ti-rich clinopyroxene and the bulk-rock analyses show that the moderately alkali basaltic composition throughout is more mafic than the basal tholeiitic sequence. Transport was by turbidity currents. Rounded epiclasts of crystalline basalts are more common than in the lower sequence, and, together with the occurrence of oxidized olivine pseudomorphs and vesicular tachylite, are taken as evidence of derivation from eroded subaerially exposed volcanics. Former sideromelane shards are more vesicular than in the lower sequence; vesicularity exceeds 60 vol.% in some clasts. The dominant clastic process is interpreted to be by shallow-water explosive eruptions. All rocks have undergone low-temperature alteration; the dominant secondary phases are "palagonite," chlorite/smectite mixed minerals, analcite, and chabazite. Smectite, chlorite, and natrolite occur in minor amounts. Phillipsite is recognized as an early alteration product, now replaced by other zeolites. During alteration, the rocks have lost up to 50% of their Ca, compared with a fresh shard and fresh glass inclusions in primary minerals, but have gained much less K, Rb, and Ba than expected, indicating rapid deposition prior to significant seafloor weathering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interstitial water samples from Leg 129, Sites 800, 801, and 802 in the Pigafetta and Mariana basins (central western Pacific), have been analyzed for major elements, B, Li, Mn, Sr, and 87Sr/86Sr. At all sites waters show enrichment in Ca and Sr and are depleted in Mg, K, Na, SO4, B, alkalinity, and 87Sr compared to seawater. These changes are related to alteration of basaltic material into secondary smectite and zeolite and recrystallization of biogenic carbonate. Water concentration depth profiles are characterized by breaks due to the presence of barriers to diffusion such as chert layers at Sites 800 and 801 and highly cemented volcanic ash at Site 802. In Site 800, below a chert layer, concentration depth profiles are vertical and reflect slight alteration of volcanic matter, either in situ or in the upper basaltic crust. Release of interlayer water from clay minerals is likely to induce observed Cl depletions. At Site 801, two units act as diffusion barrier and isolate the volcaniclastic sediments from ocean and basement. Diagenetic alteration of volcanic matter generates a chemical signature similar to that at Site 800. Just above the basaltic crust, interstitial waters are less evolved and reflect low alteration of the crust, probably because of the presence in the sediments of layers with low diffusivities. At Site 802, in Miocene tuffs, the chemical evolution generated by diagenetic alteration is extreme (Ca = 130 mmol, 87Sr/86Sr = 0.7042 at 83 meters below seafloor) and is accompanied by an increase of the Cl content (630 mmol) due to water uptake in secondary hydrous phases. Factors that enhance this evolution are a high sediment accumulation rate, high cementation preventing diffusive exchange and the reactive composition of the sediment (basaltic glass). The chemical variation is estimated to result in the alteration of more than 20% of the volcanic matter in a nearly closed system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the antarctic summer season in 1984 and 1986 field studies and laboratory investigations of the Mesozoic Intrusive Suite of the Palmer Archipel were carried out in cooperation with the Chilean Antarctic Institute and the University of Concepcion, Volcanic formations and intrusive series are the dominant exposed rocks together with very subordinate metasediments. Different petrological and isotopic data allow to divide the Antarctic Intrusive Suite into two intrusive types: a) Palmer Batholith (Lower Cenozoic) b) Costa Danco intrusive rocks (Upper Cretaceous). Both types belong to a calc-alkaline series. The granitoid rocks show an I-type-affinity. Ore minerals (pyrite, chalcopyrite, bornite, covellite, cuprite, pyrrhotite, magnetite and ilmenite) are mainly restricted to the intermediate rock types (e. g. granodiorites}. Propylitisation and kaolinisation are the observed alteration types, which suggest, together with the disseminated and vein-like ore fabrics the comparison with the andean Porphyry-Copper- and vein-type-deposits. The volcanic formations are subdivided into a) the Upper Cretaceous Wiencke Formation, which is composed of andesites and andesitic breccias, and b) into the Jurassic Lautaro Formation with basaltic, andesitic, dacitic and some rhyolitic rocks together with volcanic breccias. These calc-alkaline volcanic rocks apparently are part of an island are. A strong alteration of primary minerals is very common; however, the low ore mineral content does not change significantly within the different alteration types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a mantle plume interacts with a mid-ocean ridge, both are noticeably affected. The mid-ocean ridge can display anomalously shallow bathymetry, excess volcanism, thickened crust, asymmetric sea-floor spreading and a plume component in the composition of the ridge basalts (Schilling, 1973, doi:10.1038/242565a0; Verma et al., 1983, doi:10.1038/306654a0; Ito and Lin, 1995, doi:10.1130/0091-7613(1995)023<0657:OSCHIC>2.3.CO;2; Müller et al., 1998, doi:10.1038/24850). The hotspot-related volcanism can be drawn closer to the ridge, and its geochemical composition can also be affected (Ito and Lin, 1995, doi:10.1130/0091-7613(1995)023<0657:OSCHIC>2.3.CO;2; White et al., 1993, doi:10.1029/93JB02018; Kincaid et al., 1995, doi:10.1038/376758a0; Kingsley and Schilling, 1998, doi:10.1029/98JB01496 ). Here we present Sr-Nd-Pb isotopic analyses of samples from the next-to-oldest seamount in the Hawaiian hotspot track, the Detroit seamount at 51° N, which show that, 81 Myr ago, the Hawaiian hotspot produced volcanism with an isotopic signature indistinguishable from mid-ocean ridge basalt. This composition is unprecedented in the known volcanism from the Hawaiian hotspot, but is consistent with the interpretation from plate reconstructions (Mammerickx and Sharman, 1988, doi:10.1029/JB093iB04p03009) that the hotspot was located close to a mid-ocean ridge about 80 Myr ago. As the rising mantle plume encountered the hot, low-viscosity asthenosphere and hot, thin lithosphere near the spreading centre, it appears to have entrained enough of the isotopically depleted upper mantle to overwhelm the chemical characteristics of the plume itself. The Hawaiian hotspot thus joins the growing list of hotspots that have interacted with a rift early in their history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An isotope-geochemical study of Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429-0.70564) and lower 143Nd/144Nd [eNd(T) = 0.06-2.9] ratios in volcanic rocks from the Central Koryak segment presumably reflect contribution of an enriched mantle source; high positive eNd(T) and low 87Sr/86Sr ratios in magmatic rocks from the Northern Koryak segment area indicate their derivation from an isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: higher heat flow beneath Kamchatka led to crustal melting and contamination of mantle suprasubduction magmas by crustal melts. Cessation of suprasubduction volcanism in the Western Kamchatka segment of the continental margin belt was possibly related to accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to closure of the Ukelayat basin in Oligocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work considers results of a study of Holocene cover sediments in Iceland. They are largely composed of wind-transported palagonitized hyaloclastite particles and coeval horizons of acid and basic tephras. It is established that polyciclic aromatic hydrocarbons (PAH) are released from basaltic glass in natural environments only in case of intense physicochemical alteration and destruction of its structure. This process does not influence PAH composition and their quantitative proportions. No new PAH formed during several thousands of years in Holocene section. Hydrocarbons are transferred from fixed state in basaltic glass into free state in palagonites practically without any changes. PAH were mainly redeposited by winds, derived together with palagonite from weathered hyaloclastites, and precipitated from atmosphere with tephra during eruptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During ODP Leg 111 Hole 504B was extended 212 m deeper into the sheeted dikes of oceanic Layer 2, for a total penetration of 1288 m within basement. Study of the mineralogy, chemistry, and stable isotopic compositions of the rocks recovered on Leg 111 has confirmed and extended the previous model for hydrothermal alteration at the site: axial greenschist hydrothermal metamorphism was followed by seawater recharge and subsequent off-axis alteration. The dikes are depleted in 18O (mean delta18O = +5.1 ? +/- 0.6 ?) relative to fresh mid-ocean ridge basalt. Oxygen isotopic data on whole rocks and isolated secondary minerals indicate temperatures during axial metamorphism of 250°-350°C and water/rock ratios about one. Increasing amounts of actinolite with depth in the dike section, however, suggest that temperatures increased downward in the dikes. Pyrite + pyrrhotite + chalcopyrite + magnetite was the stable sulfide + oxide mineral assemblage during axial alteration, but these minerals partly re-equilibrated later at temperatures less than 200°C. The dikes sampled on Leg 111 contain an average of 500 ppm sulfur, slightly lower than igneous values. The delta34S values of sulfide average 0?, which indicates the presence of basaltic sulfide and incorporation of little or no seawater-derived sulfide into the rocks. These data are consistent with models for the presence of rock-dominated sulfur in deep hydrothermal fluids. The presence of anhydrite at 1176 m within basement indicates that unaltered seawater can penetrate to significant depths in the crust during recharge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 65, 15 holes were drilled at four sites located on young crust in the mouth of the Gulf of California. Quaternary to upper Pliocene hemipelagic sediments above and interlayered within the young basaltic basement were cored. The influence of hot lava, high temperature gradients, and hydrothermal activity on the mineralogy and geochemistry of the terrigenous sediments near contacts with basalts might therefore be expected. The purpose of the present study was to determine the mineralogy and inorganic geochemistry of these sediments and to analyze the nature and extent of low temperature alteration. To this end we studied the mineralogy and inorganic geochemistry of 75 sediment samples, including those immediately overlying uppermost basalts and those from layers alternating with basalts within the basement. We separated three size fractions - <2 µm (clay), 2-20 µm (intermediate), and >20 µm (coarse) - and applied the following mineralogical determinations: x-ray diffraction (XRD), infrared spectroscopy, transmission and scanning electron microscopy, and optical microscopy (for coarse fractions, using thin sections and smear slides). We calculated the percentages of clay minerals using Biscaye's (1964) method, and used routine wet chemical analyses to determine bulk composition and quantitative spectral analyses for trace elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melt inclusions in olivine and plagioclase phenocrysts from rocks (magnesian basalt, basaltic andesite, andesite, ignimbrite, and dacite) of various age from the Gorely volcanic center, southern Kamchatka, were studied by means of their homogenization and by analyzing the glasses in 100 melt inclusions on an electron microprobe and 24 inclusions on an ion probe. The SiO2 concentrations of the melts vary within a broad range of 45-74 wt%, as also are the concentrations of other major components. According to their SiO2, Na2O, K2O, TiO2, and P2O5 concentrations, the melts are classified into seven groups. The mafic melts (45-53 wt% SiO2) comprise the following varieties: potassic (on average 4.2 wt% K2O, 1.7 wt% Na2O, 1.0 wt% TiO2, and 0.20 wt% P2O5), sodic (3.2% Na2O, 1.1% K2O, 1.1% TiO2, and 0.40% P2O5), and titaniferous with high P2O5 concentrations (2.2% TiO2, 1.1% P2O5, 3.8% Na2O, and 3.0% K2O). The melts of intermediate composition (53-64% SiO2) also include potassic (5.6% K2O, 3.4% Na2O, 1.0% TiO2, and 0.4% P2O5) and sodic (4.3% Na2O, 2.8% K2O, 1.3% TiO2, and 0.4% P2O5) varieties. The acid melts (64-74% SiO2) are either potassic (4.5% K2O, 3.6% Na2O, 0.7% TiO2, and 0.15% P2O5) or sodic (4.5% Na2O, 3.1% K2O, 0.7% TiO2, and 0.13% P2O5). A distinctive feature of the Gorely volcanic center is the pervasive occurrence of K-rich compositions throughout the whole compositional range (silicity) of the melts. Melt inclusions of various types were sometimes found not only in a single sample but also in the same phenocrysts. The sodic and potassic types of the melts contain different Cl and F concentrations: the sodic melts are richer in Cl, whereas the potassic melts are enriched in F. We are the first to discover potassic melts with very high F concentrations (up to 2.7 wt%, 1.19 wt% on average, 17 analyses) in the Kuriles and Kamchatka. The average F concentration in the sodic melts is 0.16 wt% (37 analyses). The melts are distinguished for their richness in various groups of trace elements: LILE, REE (particularly HREE), and HFSE (except Nb). All of the melts share certain geochemical features. The concentrations of elements systematically increase from the mafic to acid melts (except only for the Sr and Eu concentrations, because of active plagioclase fractionation, and Ti, an element contained in ore minerals). The paper presents a review of literature data on volcanic rocks in the Kurile-Kamchatka area in which melt inclusions with high K2O concentrations (K2O/Na2O > 1) were found. K-rich melts are proved to be extremely widespread in the area and were found on such volcanoes as Avachinskii, Bezymyannyi, Bol'shoi Semyachek, Dikii Greben', Karymskii, Kekuknaiskii, Kudryavyi, and Shiveluch and in the Valaginskii and Tumrok Ranges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Izu-Bonin forearc basement volcanic rocks recovered from Holes 792E and 793B show the same phenocrystic assemblage (i.e., plagioclase, two pyroxenes, and Fe-Ti oxides ±olivine), but they differ in the crystallization sequence and their phenocryst chemistry. All the igneous rocks have suffered low-grade hydrothermal alteration caused by interaction with seawater. As a result, only clinopyroxenes, plagioclases, and oxides have preserved their primary igneous compositions. The Neogene olivine-clinopyroxene diabasic intrusion (Unit II) recovered from Hole 793B differs from the basement basaltic andesites because it lacks Cr-spinels and contains abundant titanomagnetites (Usp38.5-46.4) and uncommon FeO-rich (FeO = 29%) spinels. It displays petrological and geochemical similarities to the Izu Arc volcanoes and, thus, can be considered as related to Izu-Bonin Arc magmatic activity. The titanomagnetites (Usp28.5-33) in the calc-alkaline andesitic fragments of the Oligocene volcaniclastic breccia in Hole 793B (Unit VI) represent an early crystallization phase. The Plagioclase phenocrysts enclosed in these rocks show oscillatory zoning and are less Ca-rich (An78.6-67.8) than the plagioclase phenocrysts of the diabase sill and the basement basaltic andesites. Their clinopyroxenes are Fe-rich augites (Fs ? 19.4; FeO = 12%) and thus, differ significantly from the clinopyroxenes of the Hole 793B arc-tholeiitic igneous rocks. The 30-32 Ma porphyritic, two-pyroxene andesites recovered from Hole 792E are very similar to the andesitic clasts of the Neogene breccia recovered in Hole 793B (Unit VI). Both rocks have the same crystallization sequence, and similar chemistry of the Fe-Ti oxides, clinopyroxenes, and plagioclases: that is, Ti-rich (Usp25.5-30.4) magnetites, Fe-rich augites, and intensely oscillatory zoned plagioclases with bytownitic cores (An86-63) and labradorite rims (An73-68). They display a calc-alkaline differentiation trend (Taylor et al., this volume). So, the basement highly porphyritic andesites recovered at Hole 792E, and the Hole 793B andesitic clasts of Unit VI show the same petrological and geochemical characteristics, which are that of calc-alkaline suites. These Oligocene volcanic rocks represent likely the remnants of the Izu-Bonin normal arc magmatic activity, before the forearc rifting and extension. The crystallization sequence in the basaltic andesites recovered from Hole 793B is olivine-orthopyroxene-clinopyroxene-plagioclase-Fe-Ti oxides, indicating a tholeiitic differentiation trend for these volcanic rocks. Type i is an olivine-and Cr-spinel bearing basaltic andesite whereas Type ii is a porphyritic pyroxene-rich basaltic andesite. The porphyritic plagioclase-rich basaltic andesite (Type iii) is similar, in most respects, to Type ii lavas but contains plagioclase phenocrysts. The last, and least common lava is an aphyric to sparsely phyric andesite (Type iv). Cr-spinels, included either in the olivine pseudomorphs of Type i lavas or in the groundmass of Type ii lavas, are Cr-rich and Mg-rich. In contrast, Cr-spinels included in clinopyroxenes and orthopyroxenes (Types i and ii lavas) show lower Cr* and Mg* ratios and higher aluminium contents. Orthopyroxenes from all rock types are Mg-rich enstatites. Clinopyroxenes display endiopsidic to augitic compositions and are TiO2 and Al2O3 depleted. All the crystals exhibit strong zoning patterns, usually normal, although, reverse zoning patterns are not uncommon. The plagioclases show compositions within the range of An90-64. The Fe-Ti oxides of the groundmass are TiO2-poor (Usp16-17). The Hole 793B basaltic andesites show, like the Site 458 bronzites from the Mariana forearc, intermediate features between arc tholeiites and boninites: (1) Cr-spinel in olivine, (2) presence of Mg-rich bronzite, Ca-Mg-rich clinopyroxenes, and Ca-plagioclase phenocrysts, and (3) transitional trace element depletion and epsioln-Nd ratios between arc tholeiites and boninites. Thus, the forearc magmatism of the Izu-Bonin and Mariana arcs, linked to rifting and extension, is represented by a depleted tholeiitic suite that displays boninitic affinities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gangdese belt, Tibet, records the opening and closure of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. Mesozoic magmatic rocks generated through subduction of the Tethyan oceanic slab constitute the main component of the Gangdese belt, and play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. U-Pb and Lu-Hf isotopic data for tonalite and granodiorite from the Xietongmen-Nymo segment of the Gangdese belt indicate a significant pulse of Jurassic magmatism from 184 Ma to 168 Ma. The magmatic rocks belong to metaluminous medium-K calc-alkaline series, characterized by regular variation in major element compositions with SiO2 of 61.35%-73.59 wt%, low to moderate MgO (0.31%-2.59%) with Mg# of 37-45. These magmatic rocks are also characterized by LREE enrichment with concave upward trend in MREE on the chondrite-normalized REE patterns, and also LILE enrichment and depletion in Nb, Ta and Ti in the primitive mantle normalized spidergrams. These rocks have high zircon ?Hf(t) values of + 10.94 to + 15.91 and young two-stage depleted mantle model ages (TDM2) of 192 Ma to 670 Ma. The low MgO contents and relatively depleted Hf isotope compositions, suggest that the granitoid rocks were derived from the partial melting of the juvenile basaltic lower crust with minor mantle materials injected. In combined with the published data, it is suggested that northward subduction of the Neo-Tethyan slab beneath the Lhasa terrane began by the Late-Triassic, which formed a major belt of arc-related magmatism.