925 resultados para Integument morphology
Resumo:
Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) are used to investigate molecular organization in Langmuir-Blodgett (LB) films of two kinds of lignins. The lignins were extracted from sugar cane bagasse using distinct extraction processes and are referred to here as ethanol lignin (EL) and saccharification lignin (SAC). AFM images show that LB films from EL have a flat surface in comparison with those from SAC. For the latter, ellipsoidal aggregates are seen oriented perpendicularly to the substrate. This result is confirmed by a combination of transmission and reflection FTIR measurements, which also point to lignin aggregates preferentially oriented perpendicularly to the substrate. For LB films from EL, on the other hand, aggregates are preferentially oriented parallel to the substrate, again consistent with the flat surface observed in AFM data. The vibrational spectroscopy data for cast films from both lignins show random molecular organization, as one should expect.
Resumo:
In this study, the effect of bismuth content on the crystal structure, morphology and electric properties of barium-bismuth-tantalate (BBT) ceramics was explored with the aid of X-ray diffraction (XRD), scanning electron microcopy (SEM), dielectric properties and ferroelectric hysteresis loops. BaBi2Ta2O9 (BBT) ceramics have been successfully prepared by the solid-state reaction. The BBT phase was crystallized at 900 degreesC for 2 h. The excess of bismuth controls the grain size, affecting the density of the material. Measurements of dieletric constant and dieletric losses confirm that the material is a ferroeletric with a Curie temperature around 77 degreesC. The dieletric constant measured at room temperature was 400, with a dielectric loss of 0.03. Both the phase-transition behaviour and ferroelectric properties, such as spontaneous polarization (P-s), showed a dependence on Bi content. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present atomic force microscopic images of the interphase morphology of vertically segregated thin films spin coated from two-component mixtures of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and polystyrene (PS). We investigate the mechanism leading to the formation of wetting layers and lateral structures during spin coating using different PS molecular weights, solvents and blend compositions. Spinodal decomposition competes with the formation of surface enrichment layers. The spinodal wavelength as a function of PS molecular weight follows a power-law similar to bulk-like spinodal decomposition. Our experimental results indicate that length scales of interface topographical features can be adjusted from the nanometer to micrometer range. The importance of controlled arrangement of semiconducting polymers in thin film geometries for organic optoelectronic device applications is discussed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We present a description of the external morphology and internal oral features of the tadpole of Scinax catharinae and comparisons with the known tadpoles of the S. catharinae group. Two characters of the external morphology present some intraspecific variation: the row of submarginal papillae, which can be uniseriate or absent, and the tail tip, which can be large or small, truncated or not. That said, the tadpole of S. catharinae presents some distinguishing features that differentiate it from other tadpoles in the S. catharinae group: i) the marginal row of papillae with alternate disposition, ii) the spiracle opening on the midline of the body, iii) longest snout length, and iv) largest interorbital distance. The studied species were segregated into five ecomorphological guilds, characterized by external morphological features, tadpole habitat use and vegetation formation of species range. The taxonomy of the S. catharinae group is complex, due to the morphological similarities among the adults. Larval characters could help in the resolution of the taxonomic and phylogenetic complexities, since the morphological differences among the tadpoles in this group seem more conspicuous than those found among the adults.
Resumo:
The larval development of Pachygrapsus gracilis was studied in the laboratory under conditions of 25-degrees-C temperature and 20, 24, 28, 32 and 34 parts per thousand salinity. The objective of the study was to characterize the plankton phase of life of this species.
Resumo:
A greenhouse experiment studied the effect of potassium fertilization on soybean (Glycine max L. Merrill) root morphology and on K absorption by six soybean cultivars of different maturation groups and growth habits. The Plants were grown up to 70 days after plant emergence, in pots containing 6.0 kg of soil. In the absence of K, no significant difference in K absorption was observed among the cultivars or in root length and surface, but root mean radius was correlated to K absorption. Differences in K absorption were not associated with root characteristics in the presence of K fertilization. Physiological adjustments in K uptake, as well as K availability in the soil, were more important in soybean nutrition than were morphological adjustments in the root system. The results were not associated with plant growth habit or with maturation group.
Resumo:
The venom gland of queens of Apis mellifera was examined through light and transmission electron microscopy and subjected to electrophoretic analyses. Virgin queens exhibited prismatic secretory cells containing large amounts of rough endoplasmic reticulum with dilated cisternae, open secretory spaces, numerous vacuoles and granules scattered in the cytoplasm, and spherical nuclei with numerous nucleoli. The secretion produced was non-refringent under polarized light and the electrophoretic analysis of glandular extracts revealed five main protein bands. In mated queens, the venom gland exhibited a high degree of degeneration. Its secretion was refringent under polarized light and one of the main bands was absent in the electrophoretic pattern obtained. The morphological aspects observed are in agreement with the function of this gland in queens, given that virgin queens use venom in battles for the dominance of the colony, a situation that occurs as soon as they emerge, while fertilized queens rarely use venom. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Blends of poly(o-methoxyaniline) - POMA - and poly(vinylidene fluoride) - PVDF - of various compositions were prepared from organic solvent solutions. Flexible, free-standing and stretchable films were obtained by casting, which were characterized by conductivity measurements, electron microscopy and differential scanning calorimetry. As expected, the blends conductivity increases with increasing contents of the conducting polymer. The onset of the conductivity at low contents of conducting polymer indicates a low percolation threshold for the blends. Despite the presence of the conductive host, the blends displayed the crystalline spherulitic morphology and the beta-phase characteristic of pure PVDF. This morphology appears to be destroyed, however, if the film is stretched by zone-drawing.
SILICA MORPHOLOGY CHARACTERIZED BY SEM - THE EFFECTS OF THE SOLVENT TREATMENT AND THE DRYING PROCESS
Resumo:
Scanning electron microscopy (SEM) was used to investigated the effects of volatile solvents (such as water, propanone, ethanol, methanol or ethyl ether), treatment and drying processes, microwave ovens, drying ovens, and vacuum desiccators or freeze driers, on silica morphology. Silica gel was obtained from diluted sodium silicate (1:5 w/w SiO2:H2O). The results showed that the drying process based on freeze drying is more efficient for structural conservation of the precipitate. Treatment with volatile solvents does not change the shape of the aggregates, but has an important role in the determination of aggregate surface roughness.
Resumo:
Lithium tantalate thin films (LiTaO3) with (50:50) stoichiometry were prepared by spin coating method using a polymeric organic solution. The films were deposited on silicon (100) substrates with 4 layers. The substrates were previously cleaned and then the solution of lithium tantalate was deposited by adjusting the speed at 5000 rpm. The thin films deposited were thermally treated from 350 to 600degreesC for 3 hours in order to study the influence of the thermal treatment temperature on the crystallinity, microstructure, grain size and roughness of the final film. X-ray diffraction (XRD) results showed that the films are polycrystalline and secondary phases free. The thickness of films was observed by scanning electron microscopy (SEM). The atomic force microscopy (AFM) studies showed that the grain size and roughness are strongly influenced by thermal treatment.
Resumo:
It is shown that the adsorption and morphological properties of layer-by-layer films of poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS) are affected dramatically by different treatments of the POMA solutions employed to prepare the films. Whereas the dimension of the globular structures seen by atomic force microscopy increases non monotonically during film growth in parent POMA solution, owing to a competition of adsorption/desorption processes, it changes monotonically for the fractionated POMA. The roughness of the latter films depends on the concentration of the solution and saturates at a given size of the scan window. This allowed us to apply scaling laws that indicated a self-affine mechanism for adsorption of the treated POMA.
Resumo:
We report on the use of dynamic scale theory and fractal analyses in the Study of distinct growth stages of layer-by-layer (LBL) films of poly(allylamine hydrochloride) (PAH) and a side-chain-substituted azobenzene copolymer (Ma-co-DR13). The LBL films were adsorbed oil glass substrates and characterized with atomic force microscopy with the Ma-co-DR13 at the top layer. The ganular morphology exhibited by the films allowed the observation of the growth process inside and outside the grains. The growth outside the grains was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of ca. 2.6. One could expect that inside the grains the morphology would be close to a Euclidian surface with fractal dimension of ca. 2 for any growth stage. The latter, however, was observed only for thicker films containing more than 10 bilayers. For thinner films the morphology was well described by a self-affine fractal. Such dependence of the growth behavior with the film thickness is associated with a more complete coverage of adsorption sites in thicker films due to diffusion of polymer molecules. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Nasutitermitinae species are the most diverse and derived of the Isoptera. The phylogeny of this subfamily has been a point of divergence. In an attempt to solve this problem, we propose the use of the morphological features of the head, frontal gland and its associated muscles as phylogenetic characters in some Nasutitermitinae genera. Results found about the head and frontal gland morphology are discussed and suggested to be used in future systematic studies of termites.