871 resultados para Information security evaluation
Communicating risk of medication side effects: an empirical evaluation of EU recommended terminology
Resumo:
Two experiments compared people's interpretation of verbal and numerical descriptions of the risk of medication side effects occurring. The verbal descriptors were selected from those recommended for use by the European Union (very common, common, uncommon, rare, very rare). Both experiments used a controlled empirical methodology, in which nearly 500 members of the general population were presented with a fictitious (but realistic) scenario about visiting the doctor and being prescribed medication, together with information about the medicine's side effects and their probability of occurrence. Experiment 1 found that, in all three age groups tested (18 - 40, 41 - 60 and over 60), participants given a verbal descriptor (very common) estimated side effect risk to be considerably higher than those given a comparable numerical description. Furthermore, the differences in interpretation were reflected in their judgements of side effect severity, risk to health, and intention to comply. Experiment 2 confirmed these findings using two different verbal descriptors (common and rare) and in scenarios which described either relatively severe or relatively mild side effects. Strikingly, only 7 out of 180 participants in this study gave a probability estimate which fell within the EU assigned numerical range. Thus, large scale use of the descriptors could have serious negative consequences for individual and public health. We therefore recommend that the EU and National authorities suspend their recommendations regarding these descriptors until a more substantial evidence base is available to support their appropriate use.
Resumo:
A study examined people's interpretation of European Commission (EC) recommended verbal descriptors for risk of medicine side effects, and actions to take if they do occur. Members of the general public were presented with a fictitious (but realistic) scenario about suffering from a stiff neck, visiting the local pharmacy and purchasing an over the counter (OTC) medicine (Ibruprofen). The medicine came with an information leaflet which included information about the medicine's side effects, their risk of occurrence, and recommended actions to take if adverse effects are experienced. Probability of occurrence was presented numerically (6%) or verbally, using the recommended EC descriptor (common). Results showed that, in line with findings of our earlier work with prescribed medicines, participants significantly overestimated side effect risk. Furthermore, the differences in interpretation were reflected in their judgements of satisfaction, side effect severity, risk to health, and intention to take the medicine. Finally, we observed no significant difference between people's interpretation of the recommended action descriptors ('immediately' and 'as soon as possible'). (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We have discovered a novel approach of intrusion detection system using an intelligent data classifier based on a self organizing map (SOM). We have surveyed all other unsupervised intrusion detection methods, different alternative SOM based techniques and KDD winner IDS methods. This paper provides a robust designed and implemented intelligent data classifier technique based on a single large size (30x30) self organizing map (SOM) having the capability to detect all types of attacks given in the DARPA Archive 1999 the lowest false positive rate being 0.04 % and higher detection rate being 99.73% tested using full KDD data sets and 89.54% comparable detection rate and 0.18% lowest false positive rate tested using corrected data sets.
Resumo:
A large volume of visual content is inaccessible until effective and efficient indexing and retrieval of such data is achieved. In this paper, we introduce the DREAM system, which is a knowledge-assisted semantic-driven context-aware visual information retrieval system applied in the film post production domain. We mainly focus on the automatic labelling and topic map related aspects of the framework. The use of the context- related collateral knowledge, represented by a novel probabilistic based visual keyword co-occurrence matrix, had been proven effective via the experiments conducted during system evaluation. The automatically generated semantic labels were fed into the Topic Map Engine which can automatically construct ontological networks using Topic Maps technology, which dramatically enhances the indexing and retrieval performance of the system towards an even higher semantic level.
Resumo:
The two major applications of microwave remote sensors are radiometer and radar. Because of its importance and the nature of the application, much research has been made on the various aspects of the radar. This paper will focus on the various aspects of the radiometer from a design point of view and the Low Noise Amplifier will be designed and implemented. The paper is based on a study in radio Frequency Communications engineering and understanding of electronic and RF circuits. Some research study about the radiometer and practical implementation of Low Noise Amplifier for Radiometer will be the main focus of this paper. Basically the paper is divided into two parts. In the first part some background study about the radiometer will be carried out and commonly used types of radiometer will be discussed. In the second part LNA for the radiometer will be designed.
Resumo:
When a computer program requires legitimate access to confidential data, the question arises whether such a program may illegally reveal sensitive information. This paper proposes a policy model to specify what information flow is permitted in a computational system. The security definition, which is based on a general notion of information lattices, allows various representations of information to be used in the enforcement of secure information flow in deterministic or nondeterministic systems. A flexible semantics-based analysis technique is presented, which uses the input-output relational model induced by an attacker's observational power, to compute the information released by the computational system. An illustrative attacker model demonstrates the use of the technique to develop a termination-sensitive analysis. The technique allows the development of various information flow analyses, parametrised by the attacker's observational power, which can be used to enforce what declassification policies.
Resumo:
Information services play a crucial role in grid environments in that the state information can be used to facilitate the discovery of resources and the services available to meet user requirements, and also to help tune the performance of a grid system. However, the large size and dynamic nature of the grid brings forth a number of challenges for information services. This paper presents PIndex, a grouped peer-to-peer network that can be used for scalable grid information services. PIndex builds on Globus MDS4, but introduces peer groups to dynamically split the large grid information search space into many small sections to enhance its scalability and resilience. PIndex is subsequently modeled with Colored Petri Nets for performance evaluation. The simulation results show that PIndex is scalable and resilient in dealing with a large number of peer nodes.
Resumo:
When competing strategies for development programs, clinical trial designs, or data analysis methods exist, the alternatives need to be evaluated in a systematic way to facilitate informed decision making. Here we describe a refinement of the recently proposed clinical scenario evaluation framework for the assessment of competing strategies. The refinement is achieved by subdividing key elements previously proposed into new categories, distinguishing between quantities that can be estimated from preexisting data and those that cannot and between aspects under the control of the decision maker from those that are determined by external constraints. The refined framework is illustrated by an application to a design project for an adaptive seamless design for a clinical trial in progressive multiple sclerosis.
Resumo:
Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).
Resumo:
Although in several EU Member States many public interventions have been running for the prevention and/or management of obesity and other nutrition-related health conditions, few have yet been formally evaluated. The multidisciplinary team of the EATWELL project will gather benchmark data on healthy eating interventions in EU Member States and review existing information on the effectiveness of interventions using a three-stage procedure (i) Assessment of the intervention's impact on consumer attitudes, consumer behaviour and diets; (ii) The impact of the change in diets on obesity and health and (iii) The value attached by society to these changes, measured in life years gained, cost savings and quality-adjusted life years. Where evaluations have been inadequate, EATWELL will gather secondary data and analyse them with a multidisciplinary approach incorporating models from the psychology and economics disciplines. Particular attention will be paid to lessons that can be learned from private sector that are transferable to the healthy eating campaigns in the public sector. Through consumer surveys and workshops with other stakeholders, EATWELL will assess the acceptability of the range of potential interventions. Armed with scientific quantitative evaluations of policy interventions and their acceptability to stakeholders, EATWELL expects to recommend more appropriate interventions for Member States and the EU, providing a one-stop guide to methods and measures in interventions evaluation, and outline data collection priorities for the future.
Resumo:
Excessive salt intake is linked to cardiovascular disease and several other health problems around the world. The UK Food Standards Agency initiated a campaign at the end of 2004 to reduce salt intake in the population. There is disagreement over whether the campaign was effective in curbing salt intake or not. We provide fresh evidence on the impact of the campaign, by using data on spot urinary sodium readings and socio-demographic variables from the Health Survey for England over 2003–2007 and combining it with food price information from the Expenditure and Food Survey. Aggregating the data into a pseudo-panel, we estimate fixed effects models to examine the trend in salt intake over the period and to deduce the heterogeneous effects of the policy on the intake of socio-demographic groups. Our results are consistent with a previous hypothesis that the campaign reduced salt intakes by approximately 10%. The impact is shown to be stronger among women than among men. Older cohorts of men show a larger response to the salt campaign compared to younger cohorts, while among women, younger cohorts respond more strongly than older cohorts.
Resumo:
The aim of this paper is to critically examine the application of development appraisal to viability assessment in the planning system. This evaluation is of development appraisal models in general and also their use in particular applications associated with estimating planning obligation capacity. The paper is organised into four themes: · The context and conceptual basis for development viability appraisal · A review of development viability appraisal methods · A discussion of selected key inputs into a development viability appraisal · A discussion of the applications of development viability appraisals in the planning system It is assumed that readers are familiar with the basic models and information needs of development viability appraisal rather than at the cutting edge of practice and/or academe
Resumo:
An active pharmaceutical ingredient (API) was found to dissociate from the highly crystalline hydrochloride form to the amorphous free base form, with consequent alterations to tablet properties. Here, a wet granulation manufacturing process has been investigated using in situ Fourier transform (FT)-Raman spectroscopic analyses of granules and tablets prepared with different granulating fluids and under different manufacturing conditions. Dosage form stability under a range of storage stresses was also investigated. Despite the spectral similarities between the two drug forms, low levels of API dissociation could be quantified in the tablets; the technique allowed discrimination of around 4% of the API content as the amorphous free base (i.e. less than 1% of the tablet compression weight). API dissociation was shown to be promoted by extended exposure to moisture. Aqueous granulating fluids and manufacturing delays between granulation and drying stages and storage of the tablets in open conditions at 40◦C/75% relative humidity (RH) led to dissociation. In contrast, non-aqueous granulating fluids, with no delay in processing and storage of the tablets in either sealed containers or at lower temperature/humidity prevented detectable dissociation. It is concluded that appropriate manufacturing process and storage conditions for the finished product involved minimising exposure to moisture of the API. Analysis of the drug using FT-Raman spectroscopy allowed rapid optimisation of the process whilst offering quantitative molecular information concerning the dissociation of the drug salt to the amorphous free base form.
Resumo:
Livestock are a key asset for the global poor. However, access to relevant information is a critical issue for both the poor and the practitioners who serve them. Therefore, the authors describe a web-based Virtual Learning Environment to disseminate educational materials on priority animal health constraints in Bolivia and India. The aim was to explore demand for 3D among development practitioners in the South. Two wider arguments from the ICT4D literature framed the analysis: the concept of 3D as a ‘lead technology’ and the relevance of Internet skills to the adoption of a 3D format. The results illustrated that neither construct influenced demand. Rather, study participants were ready adopters but desired greater levels of interaction and thereby, a more collaborative learning environment. Therefore, 3D has a number of potential benefits to enhance knowledge sharing among community practitioners in the Global South.