901 resultados para Information Retrieval, Weblogs, Decision Support
Resumo:
Within a large set of renewable energies being explored to tackle energy sourcing problems, bioenergy can represent an attractive solution if effectively managed. The supply chain design supported by mathematical programming can be used as a decision support tool to the successful bioenergy production systems establishment. This strategic decision problem is addressed in this paper where we intent to study the design of the residual forestry biomass to bioelectricity production in the Portuguese context. In order to contribute to attain better solutions a mixed integer linear programming (MILP) model is developed and applied in order to optimize the design and planning of the bioenergy supply chain. While minimizing the total supply chain cost the production energy facilities capacity and location are defined. The model also includes the optimal selection of biomass amounts and sources, the transportation modes selection, and links that must be established for biomass transportation and products delivers to markets. Results illustrate the positive contribution of the mathematical programming approach to achieve viable economic solutions. Sensitivity analysis on the most uncertain parameters was performed: biomass availability, transportation costs, fixed operating costs and investment costs. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação apresentada para a obtenção do grau de Mestre em Engenharia do Ambiente, Perfil Engenharia Sanitária
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores – Sistemas Digitais e Percepcionais pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
A otimização nos sistemas de suporte à decisão atuais assume um carácter fortemente interdisciplinar relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos, sendo que a computação de soluções ótimas em muitos destes problemas é intratável. Os métodos de pesquisa heurística são conhecidos por permitir obter bons resultados num intervalo temporal aceitável. Muitas vezes, necessitam que a parametrização seja ajustada de forma a permitir obter bons resultados. Neste sentido, as estratégias de aprendizagem podem incrementar o desempenho de um sistema, dotando-o com a capacidade de aprendizagem, por exemplo, qual a técnica de otimização mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização mais adequada de um dado algoritmo num determinado cenário. Alguns dos métodos de otimização mais usados para a resolução de problemas do mundo real resultaram da adaptação de ideias de várias áreas de investigação, principalmente com inspiração na natureza - Meta-heurísticas. O processo de seleção de uma Meta-heurística para a resolução de um dado problema é em si um problema de otimização. As Híper-heurísticas surgem neste contexto como metodologias eficientes para selecionar ou gerar heurísticas (ou Meta-heurísticas) na resolução de problemas de otimização NP-difícil. Nesta dissertação pretende-se dar uma contribuição para o problema de seleção de Metaheurísticas respetiva parametrização. Neste sentido é descrita a especificação de uma Híperheurística para a seleção de técnicas baseadas na natureza, na resolução do problema de escalonamento de tarefas em sistemas de fabrico, com base em experiência anterior. O módulo de Híper-heurística desenvolvido utiliza um algoritmo de aprendizagem por reforço (QLearning), que permite dotar o sistema da capacidade de seleção automática da Metaheurística a usar no processo de otimização, assim como a respetiva parametrização. Finalmente, procede-se à realização de testes computacionais para avaliar a influência da Híper- Heurística no desempenho do sistema de escalonamento AutoDynAgents. Como conclusão genérica, é possível afirmar que, dos resultados obtidos é possível concluir existir vantagem significativa no desempenho do sistema quando introduzida a Híper-heurística baseada em QLearning.
Resumo:
No presente relatório é apresentado um estudo, realizado na forma de estágio curricular, na empresa Águas do Douro e Paiva, S.A., doravante AdDP, entre 31 de Janeiro e 31 de Julho de 2014, sobre reabilitação interior de reservatórios para água potável. Inicialmente é feito um enquadramento ao tema, com uma abordagem às características genéricas dos reservatórios de água potável e às principais patologias que se verificam no interior desses reservatórios. De seguida, são detalhadas as principais técnicas de reabilitação interior existentes, de acordo com o tipo de patologias encontradas. Como complemento a esse estudo, são apresentados os principais fornecedores e os produtos mais utilizados em cada fase da reabilitação, de acordo com a pesquisa realizada e com as reuniões presenciadas. Por fim, são ainda apresentadas, as principais considerações a ter em conta na lavagem e desinfeção de reservatórios. Atendendo à problemática em causa, foi desenvolvida uma ficha técnica para cada reservatório que, além da sistematização das características principais, tem o objetivo de registar todas as intervenções de reabilitação ou de conservação que possam ocorrer no mesmo. Para tal, foi feito um acompanhamento dos problemas e intervenções verificadas, e surgiu, ainda, a oportunidade de acompanhar o processo de lançamento a concurso das obras de reabilitação que surgiram dessa caracterização. Por fim, foi explorada a componente de gestão patrimonial de infraestruturas, com o desenvolvimento de uma matriz de risco qualitativa, específica para aplicação aos reservatórios da AdDP, com o objetivo de constituir uma ferramenta de apoio à decisão e planeamento das intervenções de reabilitação interior. Embora fora do contexto da reabilitação interior de reservatórios, é de assinalar a importante experiência proporcionada no acompanhamento da obra de alargamento do sistema multimunicipal de abastecimento de água ao concelho de Amarante, que incluiu a instalação de conduta e construção de duas estações elevatórias.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Performance appraisal increasingly assumes a more important role in any organizational environment. In the trucking industry, drivers are the company's image and for this reason it is important to develop and increase their performance and commitment to the company's goals. This paper aims to create a performance appraisal model for trucking drivers, based on a multi-criteria decision aid methodology. The PROMETHEE and MMASSI methodologies were adapted using the criteria used for performance appraisal by the trucking company studied. The appraisal involved all the truck drivers, their supervisors and the company's Managing Director. The final output is a ranking of the drivers, based on their performance, for each one of the scenarios used. The results are to be used as a decision-making tool to allocate drivers to the domestic haul service.
Resumo:
La biblioteca escolar es un servicio de información básico para todos los miembros de una comunidad educativa, que forma parte de los espacios docentes de los centros y de los procesos pedagógicos que tienen lugar en ellos. Las bibliotecas escolares funcionan como centros de recursos para las actividades de enseñanza-aprendizaje, están constituidas por un conjunto sistematizado y dinámico de servicios y fondos documentales que permiten a los usuarios desarrollar hábitos lectores y buscar y valorar las fuentes de información, entre otras relevantes funciones. Los recursos de información que albergan son uno de sus principales activos, pero si colección documental no está organizada, las tareas de búsqueda y localización de la información resultarán complicadas y la calidad de los recursos obtenidos, cuestionable. Los bibliotecarios deben conocer en profundidad las características específicas del fondo documental y las fuentes disponibles; las técnicas y herramientas adecuadas para procesar y tratar el fondo bibliográfico, así como los métodos de recuperación de la información más convenientes. En este contexto, el objetivo de este trabajo es analizar de forma pormenorizada los procesos de indización y clasificación que se realizan en las bibliotecas escolares para procesar y recuperar la información que albergan su colecciones, así como describir las características más relevantes de las herramientas específicas que se usan en las bibliotecas escolares españolas, brasileñas y portuguesas, adaptadas a las características de los usuarios que utilizan sus servicios y acuden a ellas para resolver necesidades de información. Para lograr este propósito, se analiza el concepto de biblioteca escolar de forma crítica, se estudian sus funciones y se examinan las técnicas y los instrumentos que permiten organizar la información. Entre otras herramientas, se estudian listas de encabezamientos de materia como los Encabezamientos de materia para libros infantiles y juveniles y la Lista de Encabezamientos de materia para las bibliotecas públicas; sistemas de clasificación, como la Clasificación Decimal Universal (edición de bolsillo) o la clasificación por centros de interés y tesauros especializados como el Tesauro de la Educación UNESCO-OIE y el Tesauro Europeo de la Educación, entre otros.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors research group has developed three multi-agent systems: MASCEM, which simulates the electricity markets; ALBidS that works as a decision support system for market players; and MASGriP, which simulates the internal operations of smart grids. To take better advantage of these systems, their integration is mandatory. For this reason, is proposed the development of an upper-ontology which allows an easier cooperation and adequate communication between them. Additionally, the concepts and rules defined by this ontology can be expanded and complemented by the needs of other simulation and real systems in the same areas as the mentioned systems. Each system’s particular ontology must be extended from this top-level ontology.
Resumo:
Electricity markets worldwide suffered profound transformations. The privatization of previously nationally owned systems; the deregulation of privately owned systems that were regulated; and the strong interconnection of national systems, are some examples of such transformations [1, 2]. In general, competitive environments, as is the case of electricity markets, require good decision-support tools to assist players in their decisions. Relevant research is being undertaken in this field, namely concerning player modeling and simulation, strategic bidding and decision-support.
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.