880 resultados para Information Retrieval
Resumo:
Internet growth has provoked that information search had come to have one of the most relevant roles in the industry and to be one of the most current topics in research environments. Internet is the largest information container in history and its facility to generate new information leads to new challenges when talking about retrieving information and discern which one is more relevant than the rest. Parallel to the information growth in quantity, the way information is provided has also changed. One of these changes that has provoked more information traffic has been the emergence of social networks. We have seen how social networks can provoke more traffic than search engines themselves. We can draw conclusions that allow us to take a new approach to the information retrieval problem. Public trusts the most information coming from known contacts. In this document we will explore a possible change in classic search engines to bring them closer to the social side and adquire those social advantages.
Resumo:
This paper presents work done at Medical Minner Project on the TREC-2011 Medical Records Track. The paper proposes four models for medical information retrieval based on Lucene index approach. Our retrieval engine used an Lucen Index scheme with traditional stopping and stemming, enhanced with entity recognition software on query terms. Our aim in this first competition is to set a broader project that involves the develop of a configurable Apache Lucene-based framework that allows the rapid development of medical search facilities. Results around the track median have been achieved. In this exploratory track, we think that these results are a good beginning and encourage us for future developments.
Resumo:
Die Arbeit geht dem Status quo der unternehmensweiten Suche in österreichischen Großunternehmen nach und beleuchtet Faktoren, die darauf Einfluss haben. Aus der Analyse des Ist-Zustands wird der Bedarf an Enterprise-Search-Software abgeleitet und es werden Rahmenbedingungen für deren erfolgreiche Einführung skizziert. Die Untersuchung stützt sich auf eine im Jahr 2009 durchgeführte Onlinebefragung von 469 österreichischen Großunternehmen (Rücklauf 22 %) und daran anschließende Leitfadeninterviews mit zwölf Teilnehmern der Onlinebefragung. Der theoretische Teil verortet die Arbeit im Kontext des Informations- und Wissensmanagements. Der Fokus liegt auf dem Ansatz der Enterprise Search, ihrer Abgrenzung gegenüber der Suche im Internet und ihrem Leistungsspektrum. Im empirischen Teil wird zunächst aufgezeigt, wie die Unternehmen ihre Informationen organisieren und welche Probleme dabei auftreten. Es folgt eine Analyse des Status quo der Informationssuche im Unternehmen. Abschließend werden Bekanntheit und Einsatz von Enterprise-Search-Software in der Zielgruppe untersucht sowie für die Einführung dieser Software nötige Rahmenbedingungen benannt. Defizite machen die Befragten insbesondere im Hinblick auf die übergreifende Suche im Unternehmen und die Suche nach Kompetenzträgern aus. Hier werden Lücken im Wissensmanagement offenbar. 29 % der Respondenten der Onlinebefragung geben zudem an, dass es in ihren Unternehmen gelegentlich bis häufig zu Fehlentscheidungen infolge defizitärer Informationslagen kommt. Enterprise-Search-Software kommt in 17 % der Unternehmen, die sich an der Onlinebefragung beteiligten, zum Einsatz. Die durch Enterprise-Search-Software bewirkten Veränderungen werden grundsätzlich positiv beurteilt. Alles in allem zeigen die Ergebnisse, dass Enterprise-Search-Strategien nur Erfolg haben können, wenn man sie in umfassende Maßnahmen des Informations- und Wissensmanagements einbettet.
Resumo:
Classification schemes are built at a particular point in time; at inception, they reflect a worldview indicative of that time. This is their strength, but results in potential weak- nesses as worldviews change. For example, if a scheme of mathematics is not updated even though the state of the art has changed, then it is not a very useful scheme to users for the purposes of information retrieval. However, change in schemes is a good thing. Changing allows designers of schemes to update their model and serves as a responsible mediator between resources and users. But change does come at a cost. In the print world, we revise universal clas- sification schemes—sometimes in drastic ways—and this means that over time, the power of a classification scheme to collocate is compromised if we do not account for scheme change in the organization of affected physical resources. If we understand this phenomenon in the print world, we can design ameliorations for the digital world.
Resumo:
Many years have passed since Berners-Lee envi- sioned the Web as it should be (1999), but still many information professionals do not know their precise role in its development, especially con- cerning ontologies –considered one of its main elements. Why? May it still be a lack of under- standing between the different academic commu- nities involved (namely, Computer Science, Lin- guistics and Library and Information Science), as reported by Soergel (1999)? The idea behind the Semantic Web is that of several technologies working together to get optimum information re- trieval performance, which is based on proper resource description in a machine-understandable way, by means of metadata and vocabularies (Greenberg, Sutton and Campbell, 2003). This is obviously something that Library and Information Science professionals can do very well, but, are we doing enough? When computer scientists put on stage the ontology paradigm they were asking for semantically richer vocabularies that could support logical inferences in artificial intelligence as a way to improve information retrieval systems. Which direction should vocabulary development take to contribute better to that common goal? The main objective of this paper is twofold: 1) to identify main trends, issues and problems con- cerning ontology research and 2) to identify pos- sible contributions from the Library and Information Science area to the development of ontologies for the semantic web. To do so, our paper has been structured in the following manner. First, the methodology followed in the paper is reported, which is based on a thorough literature review, where main contributions are analysed. Then, the paper presents a discussion of the main trends, issues and problems concerning ontology re- search identified in the literature review. Recom- mendations of possible contributions from the Library and Information Science area to the devel- opment of ontologies for the semantic web are finally presented.
Resumo:
This paper describes our semi-automatic keyword based approach for the four topics of Information Extraction from Microblogs Posted during Disasters task at Forum for Information Retrieval Evaluation (FIRE) 2016. The approach consists three phases.
Resumo:
Among several others, the on-site inspection process is mainly concerned with finding the right design and specifications information needed to inspect each newly constructed segment or element. While inspecting steel erection, for example, inspectors need to locate the right drawings for each member and the corresponding specifications sections that describe the allowable deviations in placement among others. These information seeking tasks are highly monotonous, time consuming and often erroneous, due to the high similarity of drawings and constructed elements and the abundance of information involved which can confuse the inspector. To address this problem, this paper presents the first steps of research that is investigating the requirements of an automated computer vision-based approach to automatically identify “as-built” information and use it to retrieve “as-designed” project information for field construction, inspection, and maintenance tasks. Under this approach, a visual pattern recognition model was developed that aims to allow automatic identification of construction entities and materials visible in the camera’s field of view at a given time and location, and automatic retrieval of relevant design and specifications information.
Resumo:
Among several others, the on-site inspection process is mainly concerned with finding the right design and specifications information needed to inspect each newly constructed segment or element. While inspecting steel erection, for example, inspectors need to locate the right drawings for each member and the corresponding specifications sections that describe the allowable deviations in placement among others. These information seeking tasks are highly monotonous, time consuming and often erroneous, due to the high similarity of drawings and constructed elements and the abundance of information involved which can confuse the inspector. To address this problem, this paper presents the first steps of research that is investigating the requirements of an automated computer vision-based approach to automatically identify “as-built” information and use it to retrieve “as-designed” project information for field construction, inspection, and maintenance tasks. Under this approach, a visual pattern recognition model was developed that aims to allow automatic identification of construction entities and materials visible in the camera’s field of view at a given time and location, and automatic retrieval of relevant design and specifications information.
On the effective inversion by imposing a priori information for retrieval of land surface parameters
Resumo:
Remembering past events - or episodic retrieval - consists of several components. There is evidence that mental imagery plays an important role in retrieval and that the brain regions supporting imagery overlap with those supporting retrieval. An open issue is to what extent these regions support successful vs. unsuccessful imagery and retrieval processes. Previous studies that examined regional overlap between imagery and retrieval used uncontrolled memory conditions, such as autobiographical memory tasks, that cannot distinguish between successful and unsuccessful retrieval. A second issue is that fMRI studies that compared imagery and retrieval have used modality-aspecific cues that are likely to activate auditory and visual processing regions simultaneously. Thus, it is not clear to what extent identified brain regions support modality-specific or modality-independent imagery and retrieval processes. In the current fMRI study, we addressed this issue by comparing imagery to retrieval under controlled memory conditions in both auditory and visual modalities. We also obtained subjective measures of imagery quality allowing us to dissociate regions contributing to successful vs. unsuccessful imagery. Results indicated that auditory and visual regions contribute both to imagery and retrieval in a modality-specific fashion. In addition, we identified four sets of brain regions with distinct patterns of activity that contributed to imagery and retrieval in a modality-independent fashion. The first set of regions, including hippocampus, posterior cingulate cortex, medial prefrontal cortex and angular gyrus, showed a pattern common to imagery/retrieval and consistent with successful performance regardless of task. The second set of regions, including dorsal precuneus, anterior cingulate and dorsolateral prefrontal cortex, also showed a pattern common to imagery and retrieval, but consistent with unsuccessful performance during both tasks. Third, left ventrolateral prefrontal cortex showed an interaction between task and performance and was associated with successful imagery but unsuccessful retrieval. Finally, the fourth set of regions, including ventral precuneus, midcingulate cortex and supramarginal gyrus, showed the opposite interaction, supporting unsuccessful imagery, but successful retrieval performance. Results are discussed in relation to reconstructive, attentional, semantic memory, and working memory processes. This is the first study to separate the neural correlates of successful and unsuccessful performance for both imagery and retrieval and for both auditory and visual modalities.
Resumo:
This article provides a broad overview of project HEED (High-rise Evacuation Evaluation Database) and the methodologies employed in the collection and storage of first-hand accounts of evacuation experiences derived from face-to-face interviews of evacuees from the World Trade Center (WTC) Twin Towers complex on September 11, 2001. In particular, the article describes the development of the HEED database. This is a flexible research tool which contains qualitative type data in the form of coded evacuee experiences along with the full interview transcripts. The data and information captured and stored in the HEED database is not only unique, but provides a means to address current and emerging issues relating to human factors associated with the evacuation of high-rise buildings