943 resultados para Independent-particle shell model
Resumo:
Developing a Model Interruption is a known human factor that contributes to errors and catastrophic events in healthcare as well as other high-risk industries. The landmark Institute of Medicine (IOM) report, To Err is Human, brought attention to the significance of preventable errors in medicine and suggested that interruptions could be a contributing factor. Previous studies of interruptions in healthcare did not offer a conceptual model by which to study interruptions. As a result of the serious consequences of interruptions investigated in other high-risk industries, there is a need to develop a model to describe, understand, explain, and predict interruptions and their consequences in healthcare. Therefore, the purpose of this study was to develop a model grounded in the literature and to use the model to describe and explain interruptions in healthcare. Specifically, this model would be used to describe and explain interruptions occurring in a Level One Trauma Center. A trauma center was chosen because this environment is characterized as intense, unpredictable, and interrupt-driven. The first step in developing the model began with a review of the literature which revealed that the concept interruption did not have a consistent definition in either the healthcare or non-healthcare literature. Walker and Avant’s method of concept analysis was used to clarify and define the concept. The analysis led to the identification of five defining attributes which include (1) a human experience, (2) an intrusion of a secondary, unplanned, and unexpected task, (3) discontinuity, (4) externally or internally initiated, and (5) situated within a context. However, before an interruption could commence, five conditions known as antecedents must occur. For an interruption to take place (1) an intent to interrupt is formed by the initiator, (2) a physical signal must pass a threshold test of detection by the recipient, (3) the sensory system of the recipient is stimulated to respond to the initiator, (4) an interruption task is presented to recipient, and (5) the interruption task is either accepted or rejected by v the recipient. An interruption was determined to be quantifiable by (1) the frequency of occurrence of an interruption, (2) the number of times the primary task has been suspended to perform an interrupting task, (3) the length of time the primary task has been suspended, and (4) the frequency of returning to the primary task or not returning to the primary task. As a result of the concept analysis, a definition of an interruption was derived from the literature. An interruption is defined as a break in the performance of a human activity initiated internal or external to the recipient and occurring within the context of a setting or location. This break results in the suspension of the initial task by initiating the performance of an unplanned task with the assumption that the initial task will be resumed. The definition is inclusive of all the defining attributes of an interruption. This is a standard definition that can be used by the healthcare industry. From the definition, a visual model of an interruption was developed. The model was used to describe and explain the interruptions recorded for an instrumental case study of physicians and registered nurses (RNs) working in a Level One Trauma Center. Five physicians were observed for a total of 29 hours, 31 minutes. Eight registered nurses were observed for a total of 40 hours 9 minutes. Observations were made on either the 0700–1500 or the 1500-2300 shift using the shadowing technique. Observations were recorded in the field note format. The field notes were analyzed by a hybrid method of categorizing activities and interruptions. The method was developed by using both a deductive a priori classification framework and by the inductive process utilizing line-byline coding and constant comparison as stated in Grounded Theory. The following categories were identified as relative to this study: Intended Recipient - the person to be interrupted Unintended Recipient - not the intended recipient of an interruption; i.e., receiving a phone call that was incorrectly dialed Indirect Recipient – the incidental recipient of an interruption; i.e., talking with another, thereby suspending the original activity Recipient Blocked – the intended recipient does not accept the interruption Recipient Delayed – the intended recipient postpones an interruption Self-interruption – a person, independent of another person, suspends one activity to perform another; i.e., while walking, stops abruptly and talks to another person Distraction – briefly disengaging from a task Organizational Design – the physical layout of the workspace that causes a disruption in workflow Artifacts Not Available – supplies and equipment that are not available in the workspace causing a disruption in workflow Initiator – a person who initiates an interruption Interruption by Organizational Design and Artifacts Not Available were identified as two new categories of interruption. These categories had not previously been cited in the literature. Analysis of the observations indicated that physicians were found to perform slightly fewer activities per hour when compared to RNs. This variance may be attributed to differing roles and responsibilities. Physicians were found to have more activities interrupted when compared to RNs. However, RNs experienced more interruptions per hour. Other people were determined to be the most commonly used medium through which to deliver an interruption. Additional mediums used to deliver an interruption vii included the telephone, pager, and one’s self. Both physicians and RNs were observed to resume an original interrupted activity more often than not. In most interruptions, both physicians and RNs performed only one or two interrupting activities before returning to the original interrupted activity. In conclusion the model was found to explain all interruptions observed during the study. However, the model will require an even more comprehensive study in order to establish its predictive value.
Resumo:
Dental caries is the most common chronic disease worldwide. It is characterized by the demineralization of tooth enamel caused by acid produced by cariogenic dental bacteria growing on tooth surfaces, termed bacterial biofilms. Cariogenesis is a complex biological process that is influence by multiple factors and is not attributed to a sole causative agent. Instead, caries is associated with multispecies microbial biofilm communities composed of some bacterial species that directly influence the development of a caries lesion and other species that are seemingly benign but must contribute to the community in an uncharacterized way. Clinical analysis of dental caries and its microbial populations is challenging due to many factors including low sensitivity of clinical measurement tools, variability in saliva chemistry, and variation in the microbiota. Our laboratory has developed an in vitro anaerobic biofilm model for dental carries to facilitate both clinical and basic research-based analyses of the multispecies dynamics and individual factors that contribute to cariogenicity. The rational for development of this system was to improve upon the current models that lack key elements. This model places an emphasis on physiological relevance and ease of maintenance and reproducibility. The uniqueness of the model is based on integrating four critical elements: 1) a biofilm community composed of four distinct and representative species typically associated with dental caries, 2) a semi-defined synthetic growth medium designed to mimic saliva, 3) physiologically relevant biofilm growth substrates, and 4) a novel biofilm reactor device designed to facilitate the maintenance and analysis. Specifically, human tooth sections or hydroxyapatite discs embedded into poly(methyl methacrylate) (PMMA) discs are incubated for an initial 24 hr in a static inverted removable substrate (SIRS) biofilm reactor at 37°C under anaerobic conditions in artificial saliva (CAMM) without sucrose in the presence of 1 X 106 cells/ml of each Actinomyces odontolyticus, Fusobacterium nucleatum, Streptococcus mutans, and Veillonella dispar. During days 2 and 3 the samples are maintained continually in CAMM with various exposures to 0.2% sucrose; all of the discs are transferred into fresh medium every 24 hr. To validate that this model is an appropriate in vitro representation of a caries-associated multispecies biofilm, research aims were designed to test the following overarching hypothesis: an in vitro anaerobic biofilm composed of four species (S. mutans, V. dispar, A. odontolyticus, and F. nucleatum) will form a stable biofilm with a community profile that changes in response to environmental conditions and exhibits a cariogenic potential. For these experiments the biofilms as described above were exposed on days 2 and 3 to either CAMM lacking sucrose (no sucrose), CAMM with 0.2% sucrose (constant sucrose), or were transferred twice a day for 1 hr each time into 0.2% sucrose (intermittent sucrose). Four types of analysis were performed: 1) fluorescence microscopy of biofilms stained with Syto 9 and hexidium idodine to determine the biofilm architecture, 2) quantitative PCR (qPCR) to determine the cell number of each species per cm2, 3) vertical scanning interferometry (VSI) to determine the cariogenic potential of the biofilms, and 4) tomographic pH imaging using radiometric fluorescence microscopy after exposure to pH sensitive nanoparticles to measure the micro-environmental pH. The qualitative and quantitative results reveal the expected dynamics of the community profile when exposed to different sucrose conditions and the cariogenic potential of this in vitro four-species anaerobic biofilm model, thus confirming its usefulness for future analysis of primary and secondary dental caries.
Resumo:
The Reoviridae virus family is a group of economically and pathologically important viruses that have either single-, double-, or triple-shelled protein layers enclosing a segmented double stranded RNA genome. Each virus particle in this family has its own viral RNA dependent RNA polymerase and the enzymatic activities necessary for the mature RNA synthesis. Based on the structure of the inner most cores of the viruses, the Reoviridae viruses can be divided into two major groups. One group of viruses has a smooth surfaced inner core, surrounded by complete outer shells of one or two protein layers. The other group has an inner core decorated with turrets on the five-fold vertices, and could either completely lack or have incomplete outer protein layers. The structural difference is one of the determinant factors for their biological differences during the infection. ^ Cytoplasmic polyhedrosis virus (CPV) is a single-shelled, turreted virus and the structurally simplest member in Reoviridae. It causes specific chronic infections in the insect gut epithelial cells. Due to its wide range of insect hosts, CPV has been engineered as a potential insecticide for use in fruit and vegetable farming. Its unique structural simplicity, unparalleled capsid stability and ease of purification make CPV an ideal model system for studying the structural basis of dsRNA virus assembly at the highest possible resolution by electron cryomicroscopy (cryoEM) and three-dimensional (3D) reconstruction. ^ In this thesis work, I determined the first 3D structure of CPV capsids using 100 kV cryoEM. At an effective resolution of 17 Å, the full capsid reveals a 600-Å diameter, T = 1 icosahedral shell decorated with A and B spikes at the 5-fold vertices. The internal space of the empty CPV is unoccupied except for 12 mushroom-shaped densities that are attributed to the transcriptional enzyme complexes. The inside of the full capsid is packed with icosahedrally-ordered viral genomic RNA. The interactions of viral RNA with the transcriptional enzyme complexes and other capsid proteins suggest a mechanism for RNA transcription and subsequent release. ^ Second, the interactions between the turret proteins (TPs) and the major capsid shell protein (CSPs) have been identified through 3D structural comparisons of the intact CPV capsids with the spikeless CPV capsids, which were generated by chemical treatments. The differential effects of these chemical treatment experiments also indicated that CPV has a significantly stronger structural integrity than other dsRNA viruses, such as the orthoreovirus subcores, which are normally enclosed within outer protein shells. ^ Finally, we have reconstructed the intact CPV to an unprecendented 8 Å resolution from several thousand of 400kV cryoEM images. The 8 Å structure reveals interactions among the 120 molecules of each of the capsid shell protein (CSP), the large protrusion protein (LPP), and 60 molecules of the turret protein (TP). A total of 1980 α-helices and 720 β-sheets have been identified in these capsid proteins. The CSP structure is largely conserved, with the majority of the secondary structures homologous to those observed in the x-ray structures of corresponding proteins of other reoviruses, such as orthoreovirus and bluetongue virus. The three domains of TP are well positioned to play multifunctional roles during viral transcription. The completely non-equivalent interactions between LPP and CSP and those between the anchoring domain of TP and CSP account for the unparalleled stability of this structurally simplest member of the Reoviridae. ^
Resumo:
The 21st Annual Biochemical Engineering Symposium was held at Colorado State University on April 20, 1991. The primary goals of this symposium series are to provide an opportunity for students to present and publish their research work and to promote informal discussions on biochemical engineering research. Contents High Density Fed-Batch Cultivation and Energy Metabolism of Bacillus thuringtensis; W.-M. Liu, V. Bihari, M. Starzak, and R.K. Bajpai Influences of Medium Composition and Cultivation Conditions on Recombinant Protein Production by Bacillus subtilis; K. Park, P.M. Linzmaier, and K.F. Reardon Characterization of a Foreign Gene Expression in a Recombinant T7 Expression System Infected with λ Phages; F. Miao and D.S. Kompala Simulation of an Enzymatic Membrane System with Forced Periodic Supply of Substrate; N. Nakaiwa, M. Yashima, L.T. Fan, and T. Ohmori Batch Extraction of Dilut Acids in a Hollow Fiber Module; D.G. O'Brien and C.E. Glatz Evaluation of a New Electrophoretic Device for Protein Purification; M.-J. Juang and R.G. Harrison Crossflow Microfiltration and Membrane Fouling for Yeast Cell Suspension; S. Redkar and R. Davis Interaction of MBP-β-Galactosidase Fusion Protein with Starch; L. Taladriz and Z. Nikolov Predicting the Solubility of Recombinant Proteins in Escherichia coli; D.L. Wilkinson and R.G. Harrison Evolution of a Phase-Separated, Gravity-Independent Bioractor; P.E. Villeneuve and E.H. Dunlop A Strategy for the Decontamination of Soils Containing Elevated Levels of PCP; S. Ghoshal, S. K. Banelji, and RK. Bajpai Practical Considerations for Implementation of a Field Scale In-Situ Bioremediation Project; J.P. McDonald, CA Baldwin, and L.E. Erickson Parametric Sensitivity Studies of Rhizopus oligosporus Solid Substrate Fermentation; J. Sargantanis, M.N. Karim, and V.G. Murphy, and RP. Tengerdy Production of Acetyl-Xylan Esterase from Aspergillus niger; M.R Samara and J.C. Linden Biological and Latex Particle Partitioning in Aqueous Two-Phase Systems; D.T.L. Hawker, RH. Davis, P.W. Todd, and R Lawson Novel Bioreactor /Separator for Microbial Desulfurization of Coal; H. Gecol, RH. Davis, and J .R Mattoon Effect of Plants and Trees on the Fate, Transport and Biodegradation of Contaminants in the Soil and Ground Water; W. Huang, E. Lee, J.F. Shimp, L.C. Davis, L.E. Erickson, and J.C. Tracy Sound Production by Interfacial Effects in Airlift Reactors; J. Hua, T.-Y. Yiin, LA Glasgow, and L.E. Erickson Soy Yogurt Fermentation of Rapid Hydration Hydrothermal Cooked Soy Milk; P. Tuitemwong, L.E. Erickson, and D.Y.C. Fung Influence of Carbon Source on Pentachlorophenol Degradation by Phanerochaete chrysosportum in Soil; C.-Y.M. Hsieh, RK. Bajpai, and S.K. Banerji Cellular Responses of Insect Cells Spodopiera frugiperda -9 to Hydrodynamic Stresses; P.L.-H. Yeh and RK. Bajpa1 A Mathematical Model for Ripening of Cheddar Cheese; J. Kim, M. Starzak, G.W. Preckshoi, and R.K. Bajpai
Resumo:
Research on the impact that work instability has on workers has the limitation of assess the relations among different variables separately, without examining the possible mediation relationships that can exists between them. The aim of this article is to test a conceptual model of the mediating relations between the uneasiness due to work instability and the psychological impact, in the framework of interactive stress theory, conducting a Path Analysis. 191 workers participated on the study, with a mean age of 31 years-old (SD = 11). Results showed that the proposed model didn't fit to the data. Alternative models were explored, consistent with the original conceptual model and the empiric evidence. A new causal model is proposed, where Uneasiness due to Work Instability as an independent variable, Personal Strain and Personal Resources as intervenient variables, and Anger, Hopelessness, and Satisfaction as dependent ones. The theoretical and empirical importance of the resulting model is discussed.
Resumo:
Research on the impact that work instability has on workers has the limitation of assess the relations among different variables separately, without examining the possible mediation relationships that can exists between them. The aim of this article is to test a conceptual model of the mediating relations between the uneasiness due to work instability and the psychological impact, in the framework of interactive stress theory, conducting a Path Analysis. 191 workers participated on the study, with a mean age of 31 years-old (SD = 11). Results showed that the proposed model didn't fit to the data. Alternative models were explored, consistent with the original conceptual model and the empiric evidence. A new causal model is proposed, where Uneasiness due to Work Instability as an independent variable, Personal Strain and Personal Resources as intervenient variables, and Anger, Hopelessness, and Satisfaction as dependent ones. The theoretical and empirical importance of the resulting model is discussed.
Resumo:
Research on the impact that work instability has on workers has the limitation of assess the relations among different variables separately, without examining the possible mediation relationships that can exists between them. The aim of this article is to test a conceptual model of the mediating relations between the uneasiness due to work instability and the psychological impact, in the framework of interactive stress theory, conducting a Path Analysis. 191 workers participated on the study, with a mean age of 31 years-old (SD = 11). Results showed that the proposed model didn't fit to the data. Alternative models were explored, consistent with the original conceptual model and the empiric evidence. A new causal model is proposed, where Uneasiness due to Work Instability as an independent variable, Personal Strain and Personal Resources as intervenient variables, and Anger, Hopelessness, and Satisfaction as dependent ones. The theoretical and empirical importance of the resulting model is discussed.
Resumo:
Four retrogressive thaw slumps (RTS) located on Herschel Island and the Yukon coast (King Point) in the western Canadian Arctic were investigated to compare the environmental, sedimentological and geochemical setting and characteristics of zones in active and stabilised slumps and at undisturbed sites. In general, the slope, sedimentology and biogeochemistry of stabilised and undisturbed zones differ, independent of their age or location. Organic carbon contents were lower in slumps than in the surrounding tundra, and the density and compaction of slump sediments were much greater. Radiocarbon dating showed that RTS were likely to have been active around 300 a BP and are undergoing a similar period of increased activity now. This cycle is thought to be controlled more by local geometry, cryostratigraphy and the rate of coastal erosion than by variation in summer temperatures.
Resumo:
In this paper, a new digital elevation model (DEM) is derived for the ice sheet in western Dronning Maud Land, Antarctica. It is based on differential interferometric synthetic aperture radar (SAR) from the European Remote Sensing 1/2 (ERS-1/2) satellites, in combination with ICESat's Geoscience Laser Altimeter System (GLAS). A DEM mosaic is compiled out of 116 scenes from the ERS-1 ice phase in 1994 and the ERS-1/2 tandem mission between 1996 and 1997 with the GLAS data acquired in 2003 that served as ground control. Using three different SAR processors, uncertainties in phase stability and baseline model, resulting in height errors of up to 20 m, are exemplified. Atmospheric influences at the same order of magnitude are demonstrated, and corresponding scenes are excluded. For validation of the DEM mosaic, covering an area of about 130,000 km**2 on a 50-m grid, independent ICESat heights (2004-2007), ground-based kinematic GPS (2005), and airborne laser scanner data (ALS, 2007) are used. Excluding small areas with low phase coherence, the DEM differs in mean and standard deviation by 0.5 +/- 10.1, 1.1 +/- 6.4, and 3.1 +/- 4.0 m from ICESat, GPS, and ALS, respectively. The excluded data points may deviate by more than 50 m. In order to suppress the spatially variable noise below a 5-m threshold, 18% of the DEM area is selectively averaged to a final product at varying horizontal spatial resolution. Apart from mountainous areas, the new DEM outperforms other currently available DEMs and may serve as a benchmark for future elevation models such as from the TanDEM-X mission to spatially monitor ice sheet elevation.
Resumo:
A nested ice flow model was developed for eastern Dronning Maud Land to assist with the dating and interpretation of the EDML deep ice core. The model consists of a high-resolution higher-order ice dynamic flow model that was nested into a comprehensive 3-D thermomechanical model of the whole Antarctic ice sheet. As the drill site is on a flank position the calculations specifically take into account the effects of horizontal advection as deeper ice in the core originated from higher inland. First the regional velocity field and ice sheet geometry is obtained from a forward experiment over the last 8 glacial cycles. The result is subsequently employed in a Lagrangian backtracing algorithm to provide particle paths back to their time and place of deposition. The procedure directly yields the depth-age distribution, surface conditions at particle origin, and a suite of relevant parameters such as initial annual layer thickness. This paper discusses the method and the main results of the experiment, including the ice core chronology, the non-climatic corrections needed to extract the climatic part of the signal, and the thinning function. The focus is on the upper 89% of the ice core (appr. 170 kyears) as the dating below that is increasingly less robust owing to the unknown value of the geothermal heat flux. It is found that the temperature biases resulting from variations of surface elevation are up to half of the magnitude of the climatic changes themselves.
Resumo:
Although grassland and savanna occupy only a quarter of the world's vegetation, burning in these ecosystems accounts for roughly half the global carbon emissions from fire. However, the processes that govern changes in grassland burning are poorly understood, particularly on time scales beyond satellite records. We analyzed microcharcoal, sediments, and geochemistry in a high-resolution marine sediment core off Namibia to identify the processes that have controlled biomass burning in southern African grassland ecosystems under large, multimillennial-scale climate changes. Six fire cycles occurred during the past 170,000 y in southern Africa that correspond both in timing and magnitude to the precessional forcing of north-south shifts in the Intertropical Convergence Zone. Contrary to the conventional expectation that fire increases with higher temperatures and increased drought, we found that wetter and cooler climates cause increased burning in the study region, owing to a shift in rainfall amount and seasonality (and thus vegetation flammability). We also show that charcoal morphology (i.e., the particle's length-to-width ratio) can be used to reconstruct changes in fire activity as well as biome shifts over time. Our results provide essential context for understanding current and future grassland-fire dynamics and their associated carbon emissions.
Resumo:
Corresponding millennial-scale climate changes have been reported from the North Atlantic region and from east Asia for the last glacial period on independent timescales only. To assess their degree of synchrony we suggest interpreting Greenland ice core dust parameters as proxies for the east Asian monsoon systems. This allows comparing North Atlantic and east Asian climate on the same timescale in high resolution ice core data without relative dating uncertainties. We find that during Dansgaard-Oeschger events North Atlantic region temperature and east Asian storminess were tightly coupled and changed synchronously within 5-10 years with no systematic lead or lag, thus providing instantaneous climatic feedback. The tight link between North Atlantic and east Asian glacial climate could have amplified changes in the northern polar cell to larger scales. We further find evidence for an early onset of a Younger Dryas-like event in continental Asia, which gives evidence for heterogeneous climate change within east Asia during the last deglaciation.