937 resultados para Impact resistance
Resumo:
Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.
Resumo:
Two independent but inter-related conditions that have a growing impact on healthy life expectancy and health care costs in developed nations are an age-related loss of muscle mass (i.e., sarcopenia) and obesity. Sarcopenia is commonly exacerbated in overweight and obese individuals. Progression towards obesity promotes an increase in fat mass and a concomitant decrease in muscle mass, producing an unfavourable ratio of fat to muscle. The coexistence of diminished muscle mass and increased fat mass (so-called 'sarcobesity') is ultimately manifested by impaired mobility and/or development of life-style-related diseases. Accordingly, the critical health issue for a large proportion of adults in developed nations is how to lose fat mass while preserving muscle mass. Lifestyle interventions to prevent or treat sarcobesity include energy-restricted diets and exercise. The optimal energy deficit to reduce body mass is controversial. While energy restriction in isolation is an effective short-term strategy for rapid and substantial weight loss, it results in a reduction of both fat and muscle mass and therefore ultimately predisposes one to an unfavourable body composition. Aerobic exercise promotes beneficial changes in whole-body metabolism and reduces fat mass, while resistance exercise preserves lean (muscle) mass. Current evidence strongly supports the inclusion of resistance and aerobic exercise to complement mild energy-restricted high-protein diets for healthy weight loss as a primary intervention for sarcobesity.
Resumo:
PURPOSE We have previously shown that the aminoacidemia caused by the consumption of a rapidly digested protein after resistance exercise enhances muscle protein synthesis (MPS) more than the amino acid (AA) profile associated with a slowly digested protein. Here, we investigated whether differential feeding patterns of a whey protein mixture commencing before exercise affect postexercise intracellular signaling and MPS. METHODS Twelve resistance-trained males performed leg resistance exercise 45 min after commencing each of three volume-matched nutrition protocols: placebo (PLAC, artificially sweetened water), BOLUS (25 g of whey protein + 5 g of leucine dissolved in artificially sweetened water; 1× 500 mL), or PULSE (15× 33-mL aliquots of BOLUS drink every 15 min). RESULTS The preexercise rise in plasma AA concentration with PULSE was attenuated compared with BOLUS (P < 0.05); this effect was reversed after exercise, with two-fold greater leucine concentrations in PULSE compared with BOLUS (P < 0.05). One-hour postexercise, phosphorylation of p70 S6K and rpS6 was increased above baseline with BOLUS and PULSE, but not PLAC (P < 0.05); furthermore, PULSE > BOLUS (P < 0.05). MPS throughout 5 h of recovery was higher with protein ingestion compared with PLAC (0.037 ± 0.007), with no differences between BOLUS or PULSE (0.085 ± 0.013 vs. 0.095 ± 0.010%•h, respectively, P = 0.56). CONCLUSIONS Manipulation of aminoacidemia before resistance exercise via different patterns of intake of protein altered plasma AA profiles and postexercise intracellular signaling. However, there was no difference in the enhancement of the muscle protein synthetic response after exercise. Protein sources producing a slow AA release, when consumed before resistance exercise in sufficient amounts, are as effective as rapidly digested proteins in promoting postexercise MPS.
Resumo:
We determined the effect of muscle glycogen concentration and postexercise nutrition on anabolic signaling and rates of myofibrillar protein synthesis after resistance exercise (REX). Sixteen young, healthy men matched for age, body mass, peak oxygen uptake (VO2peak) and strength (one repetition maximum; 1RM) were randomly assigned to either a nutrient or placebo group. After 48 h diet and exercise control, subjects undertook a glycogen-depletion protocol consisting of one-leg cycling to fatigue (LOW), whereas the other leg rested (NORM). The next morning following an overnight fast, a primed, constant infusion of L-[ring-13C6] phenylalanine was commenced and subjects completed 8 sets of 5 unilateral leg press repetitions at 80% 1RM. Immediately after REX and 2 h later, subjects consumed a 500 ml bolus of a protein/CHO (20 g whey + 40 g maltodextrin) or placebo beverage. Muscle biopsies from the vastus lateralis of both legs were taken at rest and 1 and 4 h after REX. Muscle glycogen concentration was higher in the NORM than LOW at all time points in both nutrient and placebo groups (P < 0.05). Postexercise Akt-p70S6K-rpS6 phosphorylation increased in both groups with no differences between legs (P < 0.05). mTORSer2448 phosphorylation in placebo increased 1 h after exercise in NORM (P < 0.05), whereas mTOR increased ?4-fold in LOW (P < 0.01) and ?11 fold in NORM with nutrient (P < 0.01; different between legs P < 0.05). Post-exercise rates of MPS were not different between NORM and LOW in nutrient (0.070 ± 0.022 vs. 0.068 ± 0.018 %/h) or placebo (0.045 ± 0.021 vs. 0.049 ± 0.017 %/h). We conclude that commencing high-intensity REX with low muscle glycogen availability does not compromise the anabolic signal and subsequent rates of MPS, at least during the early (4 h) postexercise recovery period.
Resumo:
Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. J Appl Physiol 112: 1805-1813, 2012. First published March 1, 2012; doi:10.1152/japplphysiol.00170.2012.- We made sex-based comparisons of rates of myofibrillar protein synthesis (MPS) and anabolic signaling after a single bout of high-intensity resistance exercise. Eight men (20 ± 10 yr, BMI = 24.3 ± 2.4) and eight women (22 ± 1.8 yr, BMI = 23.0 ± 1.9) underwent primed constant infusions of L-[ring-13C6]phenylalanine on consecutive days with serial muscle biopsies. Biopsies were taken from the vastus lateralis at rest and 1, 3, 5, 24, 26, and 28 h after exercise. Twenty-five grams of whey protein was ingested immediately and 26 h after exercise. We also measured exercise-induced serum testosterone because it is purported to contribute to increases in myofibrillar protein synthesis (MPS) postexercise and its absence has been hypothesized to attenuate adaptative responses to resistance exercise in women. The exercise-induced area under the testosterone curve was 45-fold greater in men than women in the early (1 h) recovery period following exercise (P < 0.001). MPS was elevated similarly in men and women (2.3- and 2.7-fold, respectively) 1-5 h postexercise and after protein ingestion following 24 h recovery. Phosphorylation of mTORSer2448 was elevated to a greater extent in men than women acutely after exercise (P = 0.003), whereas increased phosphorylation of p70S6K1Thr389 was not different between sexes. Androgen receptor content was greater in men (main effect for sex, P = 0.049). Atrogin-1 mRNA abundance was decreased after 5 h recovery in both men and women (P < 0.001), and MuRF-1 expression was elevated in men after protein ingestion following 24 h recovery (P = 0.003). These results demonstrate minor sex-based differences in signaling responses and no difference in the MPS response to resistance exercise in the fed state. Interestingly, our data demonstrate that exerciseinduced increases in MPS are dissociated from postexercise testosteronemia and that stimulation of MPS occurs effectively with low systemic testosterone concentrations in women.
Resumo:
Background: Ingestion of whey or casein yields divergent patterns of aminoacidemia that influence whole-body and skeletal muscle myofibrillar protein synthesis (MPS) after exercise. Direct comparisons of the effects of contrasting absorption rates exhibited by these proteins are confounded by their differing amino acid contents. Objective: Our objective was to determine the effect of divergent aminoacidemia by manipulating ingestion patterns of whey protein alone on MPS and anabolic signaling after resistance exercise. Design: In separate trials, 8 healthy men consumed whey protein either as a single bolus (BOLUS; 25-g dose) or as repeated, small, "pulsed" drinks (PULSE; ten 2.5-g drinks every 20 min) to mimic a more slowly digested protein. MPS and phosphorylation of signaling proteins involved in protein synthesis were measured at rest and after resistance exercise. Results: BOLUS increased blood essential amino acid (EAA) concentrations above those of PULSE (162% compared with 53%, P < 0.001) 60 min after exercise, whereas PULSE resulted in a smaller but sustained increase in aminoacidemia that remained elevated above BOLUS amounts later (180-220 min after exercise, P < 0.05). Despite an identical net area under the EAA curve, MPS was elevated to a greater extent after BOLUS than after PULSE early (1-3 h: 95% compared with 42%) and later (3-5 h: 193% compared with 121%) (both P < 0.05). There were greater changes in the phosphorylation of the Akt-mammalian target of rapamycin pathway after BOLUS than after PULSE. Conclusions: Rapid aminoacidemia in the postexercise period enhances MPS and anabolic signaling to a greater extent than an identical amount of protein fed in small pulses that mimic a more slowly digested protein. A pronounced peak aminoacidemia after exercise enhances protein synthesis.
Resumo:
Purpose The aim of this study was to determine the early time course of exercise-induced signaling after divergent contractile activity associated with resistance and endurance exercise. Methods Sixteen male subjects were randomly assigned to either a cycling (CYC; n = 8, 60 min, 70% V?O2peak) or resistance (REX; n = 8, 8×5 leg extension, 80% one-repetition maximum, 3-min recovery) exercise group. Serial muscle biopsies were obtained from vastus lateralis at rest before, immediately after, and after 15, 30, and 60 min of passive recovery to determine early signaling responses after exercise. Results There were comparable increases from rest in AktThr308/Ser473 and mTORSer2448 phosphorylation during the postexercise time course that peaked 30-60 min after both CYC and REX (P<0.05). There were also similar patterns in p70S6K Thr389 and 4E-BP1Thr37/46 phosphorylation, but a greater magnitude of effect was observed for REX and CYC, respectively (P<0.05). However, AMPKThr172 phosphorylation was only significantly elevated after CYC (P<0.05), and we observed divergent responses for glycogen synthaseSer641 and AS160 phosphorylation that were enhanced after CYC but not REX (P<0.05). Conclusions We show a similar time course for Akt-mTOR-S6K phosphorylation during the initial 60-min recovery period after divergent contractile stimuli. Conversely, enhanced phosphorylation status of proteins that promote glucose transport and glycogen synthesis only occurred after endurance exercise. Our results indicate that endurance and resistance exercise initiate translational signaling, but high-load, low-repetition contractile activity failed to promote phosphorylation of pathways regulating glucose metabolism.
Resumo:
We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3 kg; peak oxygen uptake, 47 ± 9.9 ml·kg -1 ·min -1; one repetition maximum (1-RM) leg extension 92.2 ± 12.5 kg; means ± SD] were randomly assigned to trials consisting of either resistance exercise (8 × 5 leg extension, 80% 1-RM) followed by repeated sprints (10 × 6 s, 0.75 N·m torque·kg -1) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation (?75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery (?50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect (P < 0.01). When resistance exercise was followed by repeated sprints PGC-1? mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes.
Resumo:
PURPOSE: Regulation of skeletal muscle mass is highly dependent on contractile loading. The purpose of this study was to examine changes in growth factor and inflammatory pathways following high-frequency resistance training. METHODS: Using a novel design in which male Sprague-Dawley rats undertook a "stacked" resistance training protocol designed to generate a summation of transient exercise-induced signaling responses (four bouts of three sets × 10 repetitions of squat exercise, separated by 3 h of recovery), we determined the effects of high training frequency on signaling pathways and transcriptional activity regulating muscle mass. RESULTS: The stacked training regimen resulted in acute suppression of insulin-like growth factor 1 mRNA abundance (P < 0.05) and Akt phosphorylation (P < 0.05), an effect that persisted 48 h after the final training bout. Conversely, stacked training elicited a coordinated increase in the expression of tumor necrosis factor alpha, inhibitor kappa B kinase alpha/beta activity (P < 0.05), and p38 mitogen-activated protein kinase phosphorylation (P < 0.05) at 3 h after each training bout. In addition, the stacked series of resistance exercise bouts induced an increase in p70 S6 kinase phosphorylation 3 h after bouts ×3 and ×4, independent of the phosphorylation state of Akt. CONCLUSIONS: Our results indicate that high resistance training frequency extends the transient activation of inflammatory signaling cascades, concomitant with persistent suppression of key mediators of anabolic responses. We provide novel insights into the effects of the timing of exercise-induced overload and recovery on signal transduction pathways and transcriptional activity regulating skeletal muscle mass in vivo.
Resumo:
This thesis is a population-based epidemiological study to explore the spatial and temporal pattern of malaria, and to assess the relationship between socio-ecological factors and malaria in Yunnan, China. Geospatial and temporal approaches were applied; the high risk areas of the disease were identified; and socio-ecological drivers of malaria were assessed. These findings will provide important evidence for the control and prevention of malaria in China and other countries with a similar situation of endemic malaria.
Resumo:
Genetic variability in the strength and precision of fear memory is hypothesised to contribute to the etiology of anxiety disorders, including post-traumatic stress disorder. We generated fear-susceptible (F-S) or fear-resistant (F-R) phenotypes from an F8 advanced intercross line (AIL) of C57BL/6J and DBA/2J inbred mice by selective breeding. We identified specific traits underlying individual variability in Pavlovian conditioned fear learning and memory. Offspring of selected lines differed in the acquisition of conditioned fear. Furthermore, F-S mice showed greater cued fear memory and generalised fear in response to a novel context than F-R mice. F-S mice showed greater basal corticosterone levels and hypothalamic corticotrophin-releasing hormone (CRH) mRNA levels than F-R mice, consistent with higher hypothalamic-pituitary-adrenal (HPA) axis drive. Hypothalamic mineralocorticoid receptor and CRH receptor 1 mRNA levels were decreased in F-S mice as compared with F-R mice. Manganese-enhanced magnetic resonance imaging (MEMRI) was used to investigate basal levels of brain activity. MEMRI identified a pattern of increased brain activity in F-S mice that was driven primarily by the hippocampus and amygdala, indicating excessive limbic circuit activity in F-S mice as compared with F-R mice. Thus, selection pressure applied to the AIL population leads to the accumulation of heritable trait-relevant characteristics within each line, whereas non-behaviorally relevant traits remain distributed. Selected lines therefore minimise false-positive associations between behavioral phenotypes and physiology. We demonstrate that intrinsic differences in HPA axis function and limbic excitability contribute to phenotypic differences in the acquisition and consolidation of associative fear memory. Identification of system-wide traits predisposing to variability in fear memory may help in the direction of more targeted and efficacious treatments for fear-related pathology. Through short-term selection in a B6D2 advanced intercross line we created mouse populations divergent for the retention of Pavlovian fear memory. Trait distinctions in HPA-axis drive and fear network circuitry could be made between naïve animals in the two lines. These data demonstrate underlying physiological and neurological differences between Fear-Susceptible and Fear-Resistant animals in a natural population. F-S and F-R mice may therefore be relevant to a spectrum of disorders including depression, anxiety disorders and PTSD for which altered fear processing occurs.
Resumo:
The aims of this project is to develop demand side response model which assists electricity consumers who are exposed to the market price through aggregator to manage the air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimise the energy cost caused by the air-conditioning load considering the electricity market price and network overload. The model is tested with selected characteristics of the room, Queensland electricity market data from Australian Energy Market Operator and data from the Bureau of Statistics on temperatures in Brisbane, during weekdays on hot days from 2011 - 2012.
Resumo:
This study examined the impact of a social-cognitive teaching strategy, the community of inquiry, on the functioning of six Year 4 students with learning difficulties. Results indicated that the students became more self-regulated in their learning and developed greater academic self-efficacy and stronger reading comprehension skills. Although the degree of development varied across the group, the results indicated that all six students (in addition to their class peers) benefited from actively engaging in scaffolded opportunities for intellectual and social exchange in a whole class setting. Accordingly, the findings of this study have implications for approaches to supporting the development and learning of students with learning difficulties.
Resumo:
As a renewable energy source, wind power is playing an increasingly important role in China’s electricity supply. Meanwhile, China is also the world’s largest market for Clean Development Mechanism (CDM) wind power projects. Based on the data of 27 wind power projects of Inner Mongolia registered with the Executive Board of the United Nations (EB) in 2010, this paper constructs a financial model of Net Present Value (NPV) to analyze the cost of wind power electricity. A sensitivity analysis is then conducted to examine the impact of different variables with and without Certified Emission Reduction (CER) income brought about by the CDM. It is concluded that the CDM, along with static investment and annual wind electricity production, is one of the most significant factors in promoting the development of wind power in China. Additionally, wind power is envisaged as a practical proposition for competing with thermal power if the appropriate actions identified in the paper are made.
Resumo:
In 2009, Mark Deuze proposed an updated approach to media studies to incorporate ‘media life’, a concept he suggests addresses the invisibleness of ubiquitous media. Media life provides a useful lens for researchers to understand the human condition in media and not with media. At a similar time, public service media (PSM) strategies have aligned audience participation with the so‐called Reithian trinity which suggest the PSB should inform, educate and entertain while performing its core values of public service broadcasting (Enli 2008). Remix within the PSM institution relies on audience participation, employing ‘the people formerly known as the audience’ (Rosen 2006) as cultural artifact producers, and draws on their experience from within the media. Remix as a practice then enables us to examine the shift of the core PSM values by understanding how audience participation, informed by a human condition mobilised from our existence of being in media and not merely with media. However, remix within PSM challenges the once elitist construction of meaning models with an egalitarian approach towards socially reappropriated texts, questioning its affect on the cultural landscape. This paper draws on three years of ethnographic data from within the Australian Broadcasting Corporation (ABC), exploring the remix culture of ABC Pool. ABC Pool operates under a Creative Commons licensing regime to enable remix practice under the auspices of the ABC. ABC Pool users provide a useful group of remix practitioners to examine as they had access to a vast ABC archival collection and were invited to remix those cultural artefacts, often adding cultural and fiscal value. This paper maintains a focus on the audience participation within PSM through remix culture by applying media dependency theory to remix as cultural practice and calls to expand and update the societal representation within the ABC.