952 resultados para Illinois Standards Achievement Test.
Resumo:
Surface topography has been known to play an important role in the friction and transfer layer formation during sliding. In the present investigation, EN8 steel flats were ground to attain different surface roughness with unidirectional grinding marks. Pure Mg pins were scratched on these surfaces using an Inclined Scratch Tester to study the influence of directionality of surface grinding marks on coefficient of friction and transfer layer formation. Grinding angle (i.e., the angle between direction of scratch and grinding marks) was varied between 0 degrees and 90 degrees during the tests. Experiments were conducted under both dry and lubricated conditions. Scanning electron micrographs of the contact surfaces of pins and flats were used to reveal the surface features that included the morphology of the transfer layer. It was observed that the average coefficient of friction and transfer layer formation depend primarily on the directionality of the grinding marks but were independent of surface roughness on the harder mating surface. In addition, a stick-slip phenomenon was observed, the amplitude of which depended both on the directionality of grinding marks and the surface roughness of the harder mating surface. The grinding angle effect on the coefficient of friction, which consists of adhesion and plowing components, was attributed to the variation of plowing component of friction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
One of the central issues in making efficient use of IT in the design, construction and maintenance of buildings is the sharing of the digital building data across disciplines and lifecycle stages. One technology which enables data sharing is CAD layering, which to be of real use requires the definition of standards. This paper focuses on the background, objectives and effectiveness of the International standard ISO 13567, Organisation and naming of layers for CAD. In particular the efficiency and effectiveness of the standardisation and standard implementation process are in focus, rather than the technical details. The study was conducted as a qualitative study with a number of experts who responded to a semi-structured mail questionnaire, supplemented by personal interviews. The main results were that CAD layer standards based on the ISO standard have been implemented, particularly in northern European countries, but are not very widely used. A major problem which was identified was the lack of resources for marketing and implementing the standard as national variations, once it had been formally accepted.
Resumo:
A low strain shear modulus plays a fundamental role in the estimation of site response parameters In this study an attempt has been made to develop the relationships between standard penetration test (SPT) N values with the low strain shear modulus (G(max)) For this purpose, field experiments SPT and multichannel analysis of surface wave data from 38 locations in Bangalore, India, have been used, which were also used for seismic microzonation project The in situ density of soil layer was evaluated using undisturbed soil samples from the boreholes Shear wave velocity (V-s) profiles with depth were obtained for the same locations or close to the boreholes The values for low strain shear modulus have been calculated using measured V-s and soil density About 215 pairs of SPT N and G(max) values are used for regression analysis The differences between fitted regression relations using measured and corrected values were analyzed It is found that an uncorrected value of N and modulus gives the best fit with a high regression coefficient when compared to corrected N and corrected modulus values This study shows better correlation between measured values of N and G(max) when compared to overburden stress corrected values of N and G(max)
Resumo:
Grid-connected systems when put to use at the site would experience scenarios like voltage sag, voltage swell, frequency deviations and unbalance which are common in the real world grid. When these systems are tested at laboratory, these scenarios do not exist and an almost stiff voltage source is what is usually seen. But, to qualify the grid-connected systems to operate at the site, it becomes essential to test them under the grid conditions mentioned earlier. The grid simulator is a hardware that can be programmed to generate some of the typical conditions experienced by the grid-connected systems at site. It is an inverter that is controlled to act like a voltage source in series with a grid impedance. The series grid impedance is emulated virtually within the inverter control rather than through physical components, thus avoiding the losses and the need for bulky reactive components. This paper describes the design of a grid simulator. Control implementation issues are highlighted in the experimental results.
Resumo:
This paper investigates the clustering pattern in the Finnish stock market. Using trading volume and time as factors capturing the clustering pattern in the market, the Keim and Madhavan (1996) and the Engle and Russell (1998) model provide the framework for the analysis. The descriptive and the parametric analysis provide evidences that an important determinant of the famous U-shape pattern in the market is the rate of information arrivals as measured by large trading volumes and durations at the market open and close. Precisely, 1) the larger the trading volume, the greater the impact on prices both in the short and the long run, thus prices will differ across quantities. 2) Large trading volume is a non-linear function of price changes in the long run. 3) Arrival times are positively autocorrelated, indicating a clustering pattern and 4) Information arrivals as approximated by durations are negatively related to trading flow.
Resumo:
Conformance testing focuses on checking whether an implementation. under test (IUT) behaves according to its specification. Typically, testers are interested it? performing targeted tests that exercise certain features of the IUT This intention is formalized as a test purpose. The tester needs a "strategy" to reach the goal specified by the test purpose. Also, for a particular test case, the strategy should tell the tester whether the IUT has passed, failed. or deviated front the test purpose. In [8] Jeron and Morel show how to compute, for a given finite state machine specification and a test purpose automaton, a complete test graph (CTG) which represents all test strategies. In this paper; we consider the case when the specification is a hierarchical state machine and show how to compute a hierarchical CTG which preserves the hierarchical structure of the specification. We also propose an algorithm for an online test oracle which avoids a space overhead associated with the CTG.
Resumo:
One of the foremost design considerations in microelectronics miniaturization is the use of embedded passives which provide practical solution. In a typical circuit, over 80 percent of the electronic components are passives such as resistors, inductors, and capacitors that could take up to almost 50 percent of the entire printed circuit board area. By integrating passive components within the substrate instead of being on the surface, embedded passives reduce the system real estate, eliminate the need for discrete and assembly, enhance electrical performance and reliability, and potentially reduce the overall cost. Moreover, it is lead free. Even with these advantages, embedded passive technology is at a relatively immature stage and more characterization and optimization are needed for practical applications leading to its commercialization.This paper presents an entire process from design and fabrication to electrical characterization and reliability test of embedded passives on multilayered microvia organic substrate. Two test vehicles focusing on resistors and capacitors have been designed and fabricated. Embedded capacitors in this study are made with polymer/ceramic nanocomposite (BaTiO3) material to take advantage of low processing temperature of polymers and relatively high dielectric constant of ceramics and the values of these capacitors range from 50 pF to 1.5 nF with capacitance per area of approximately 1.5 nF/cm(2). Limited high frequency measurement of these capacitors was performed. Furthermore, reliability assessments of thermal shock and temperature humidity tests based on JEDEC standards were carried out. Resistors used in this work have been of three types: 1) carbon ink based polymer thick film (PTF), 2) resistor foils with known sheet resistivities which are laminated to printed wiring board (PWB) during a sequential build-up (SBU) process and 3) thin-film resistor plating by electroless method. Realization of embedded resistors on conventional board-level high-loss epoxy (similar to 0.015 at 1 GHz) and proposed low-loss BCB dielectric (similar to 0.0008 at > 40 GHz) has been explored in this study. Ni-P and Ni-W-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. For the first time, Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced System-on-Package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties.Although embedded passives are more reliable by eliminating solder joint interconnects, they also introduce other concerns such as cracks, delamination and component instability. More layers may be needed to accommodate the embedded passives, and various materials within the substrate may cause significant thermo -mechanical stress due to coefficient of thermal expansion (CTE) mismatch. In this work, numerical models of embedded capacitors have been developed to qualitatively examine the effects of process conditions and electrical performance due to thermo-mechanical deformations.Also, a prototype working product with the board level design including features of embedded resistors and capacitors are underway. Preliminary results of these are presented.
Resumo:
This paper is concerned with using the bootstrap to obtain improved critical values for the error correction model (ECM) cointegration test in dynamic models. In the paper we investigate the effects of dynamic specification on the size and power of the ECM cointegration test with bootstrap critical values. The results from a Monte Carlo study show that the size of the bootstrap ECM cointegration test is close to the nominal significance level. We find that overspecification of the lag length results in a loss of power. Underspecification of the lag length results in size distortion. The performance of the bootstrap ECM cointegration test deteriorates if the correct lag length is not used in the ECM. The bootstrap ECM cointegration test is therefore not robust to model misspecification.
Resumo:
High-precision measurement of the electrical resistance of nickel along its critical line, a first attempt of this kind, as a function of pressure to 47.5 kbar is reported. Our analysis yields the values of the critical exponents α=α’=-0.115±0.005 and the amplitude ratios ‖A/A’‖=1.17±0.07 and ‖D/D’‖=1.2±0.1. These values are in close agreement with those predicted by renormalization-group (RG) theory. Moreover, this investigation provides an unambiguous experimental verification to one of the key consequences of RG theory that the critical exponents and amplitudes ratios are insensitive to pressure variation in nickel, a Heisenberg ferromagnet.
Resumo:
The displacement between the ridges situated outside the filleted test section of an axially loaded unnotched specimen is computed from the axial load and shape of the specimen and compared with extensometer deflection data obtained from experiments. The effect of prestrain on the extensometer deflection versus specimen strain curve has been studied experimentally and analytically. An analytical study shows that an increase in the slope of the stress-strain curve in the inelastic region increases the slope of the corresponding computed extensometer deflection versus specimen strain curve. A mathematical model has been developed which uses a modified length ¯ℓef in place of the actual length of the uniform diameter test section of the specimen. This model predicts the extensometer deflection within 5% of the corresponding experimental value. This method has been successfully used by the authors to evolve an iterative procedure for predicting the cyclic specimen strain in axial fatigue tests on unnotched specimens.
Resumo:
Vegetation maps and bioclimatic zone classifications communicate the vegetation of an area and are used to explain how the environment regulates the occurrence of plants on large scales. Many practises and methods for dividing the world’s vegetation into smaller entities have been presented. Climatic parameters, floristic characteristics, or edaphic features have been relied upon as decisive factors, and plant species have been used as indicators for vegetation types or zones. Systems depicting vegetation patterns that mainly reflect climatic variation are termed ‘bioclimatic’ vegetation maps. Based on these it has been judged logical to deduce that plants moved between corresponding bioclimatic areas should thrive in the target location, whereas plants moved from a different zone should languish. This principle is routinely applied in forestry and horticulture but actual tests of the validity of bioclimatic maps in this sense seem scanty. In this study I tested the Finnish bioclimatic vegetation zone system (BZS). Relying on the plant collection of Helsinki University Botanic Garden’s Kumpula collection, which according to the BZS is situated at the northern limit of the hemiboreal zone, I aimed to test how the plants’ survival depends on their provenance. My expectation was that plants from the hemiboreal or southern boreal zones should do best in Kumpula, whereas plants from more southern and more northern zones should show progressively lower survival probabilities. I estimated probability of survival using collection database information of plant accessions of known wild origin grown in Kumpula since the mid 1990s, and logistic regression models. The total number of accessions I included in the analyses was 494. Because of problems with some accessions I chose to separately analyse a subset of the complete data, which included 379 accessions. I also analysed different growth forms separately in order to identify differences in probability of survival due to different life strategies. In most analyses accessions of temperate and hemiarctic origin showed lower survival probability than those originating from any of the boreal subzones, which among them exhibited rather evenly high probabilities. Exceptionally mild and wet winters during the study period may have killed off hemiarctic plants. Some winters may have been too harsh for temperate accessions. Trees behaved differently: they showed an almost steadily increasing survival probability from temperate to northern boreal origins. Various factors that could not be controlled for may have affected the results, some of which were difficult to interpret. This was the case in particular with herbs, for which the reliability of the analysis suffered because of difficulties in managing their curatorial data. In all, the results gave some support to the BZS, and especially its hierarchical zonation. However, I question the validity of the formulation of the hypothesis I tested since it may not be entirely justified by the BZS, which was designed for intercontinental comparison of vegetation zones, but not specifically for transcontinental provenance trials. I conclude that botanic gardens should pay due attention to information management and curational practices to ensure the widest possible applicability of their plant collections.
Resumo:
Previous studies indicate that positive learning experiences are related to academic achievement as well as to well-being. On the other hand, emotional and motivational problems in studying may pose a risk for both academic achievement and well-being. Thus, emotions and motivation have an increasing role in explaining university students learning and studying. The relations between emotions, motivation, study success and well-being have been less frequently studied. The aim of this study was to investigate what kind of academic emotions, motivational factors and problems in studying students experienced five days before an exam of an activating lecture course, and the relations among these factors as well as their relation to self-study time and study success. Furthermore, the effect of all these factors on well-being, flow experience and academic achievement was examined. The term academic emotion was defined as emotion experienced in academic settings and related to studying. In the present study the theoretical background to motivational factors was based on thinking strategies and attributions, flow experience and task value. Problems in studying were measured in terms of exhaustion, anxiety, stress, lack of interest, lack of self-regulation and procrastination. The data were collected in December 2009 in an activating educational psychology lecture course by using a questionnaire. The participants (n=107) were class and kindergarten teacher students from the University of Helsinki. Most of them were first year students. The course grades were also gathered. Correlations and stepwise regression analysis were carried out to find out the factors that were related to or explained study success. The clusters that presented students´ problems in studying as well as thinking strategies and attributions, were found through hierarchical cluster analysis. K-means cluster analysis was used to form the final groups. One-way analysis of variance, Kruskal-Wallis test and crosstabs were conducted to see whether the students in different clusters varied in terms of study success, academic emotions, task value, flow, and background variables. The results indicated that academic emotions measured five days before the exam explained about 30 % of the variance of the course grade; exhaustion and interest positively, and anxiety negatively. In addition, interest as well as the self-study time best explained study success on the course. The participants were classified into three clusters according to their problems in studying as well as their thinking strategies and attributions: 1) ill-being, 2) carefree, and 3) committed and optimistic students. Ill-being students reported most negative emotions, achieved the worst grades, experienced anxiety rather than flow and were also the youngest. Carefree students, on the other hand, expressed the least negative emotions and spent the least time on self-studying, and like committed students, experienced flow. In addition, committed students reported positive emotions the most often and achieved the best grades on the course. In the future, more in-depth understanding how and why especially young first year students experience their studying hard is needed, because early state of the studies is shown to predict later study success.
Resumo:
Purpose - This paper aims to validate a comprehensive aeroelastic analysis for a helicopter rotor with the higher harmonic control aeroacoustic rotor test (HART-II) wind tunnel test data. Design/methodology/approach - Aeroelastic analysis of helicopter rotor with elastic blades based on finite element method in space and time and capable of considering higher harmonic control inputs is carried out. Moderate deflection and coriolis nonlinearities are included in the analysis. The rotor aerodynamics are represented using free wake and unsteady aerodynamic models. Findings - Good correlation between analysis and HART-II wind tunnel test data is obtained for blade natural frequencies across a range of rotating speeds. The basic physics of the blade mode shapes are also well captured. In particular, the fundamental flap, lag and torsion modes compare very well. The blade response compares well with HART-II result and other high-fidelity aeroelastic code predictions for flap and torsion mode. For the lead-lag response, the present analysis prediction is somewhat better than other aeroelastic analyses. Research limitations/implications - Predicted blade response trend with higher harmonic pitch control agreed well with the wind tunnel test data, but usually contained a constant offset in the mean values of lead-lag and elastic torsion response. Improvements in the modeling of the aerodynamic environment around the rotor can help reduce this gap between the experimental and numerical results. Practical implications - Correlation of predicted aeroelastic response with wind tunnel test data is a vital step towards validating any helicopter aeroelastic analysis. Such efforts lend confidence in using the numerical analysis to understand the actual physical behavior of the helicopter system. Also, validated numerical analyses can take the place of time-consuming and expensive wind tunnel tests during the initial stage of the design process. Originality/value - While the basic physics appears to be well captured by the aeroelastic analysis, there is need for improvement in the aerodynamic modeling which appears to be the source of the gap between numerical predictions and HART-II wind tunnel experiments.
Resumo:
A method has been suggested to accurately determine the DBTT of diffusion aluminide bond coats. Micro-tensile testing of free-standing coating samples has been carried out. The DBTT was determined based on the variation of plastic strain-to-fracture with temperature. The positive features of this method over the previously reported techniques are highlighted. (C) 2010 Elsevier B.V. All rights reserved.