964 resultados para INTEGER LINEAR PROGRAMMING
Resumo:
In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.
Resumo:
In Distributed Computer-Controlled Systems (DCCS), a special emphasis must be given to the communication infrastructure, which must provide timely and reliable communication services. CAN networks are usually suitable to support small-scale DCCS. However, they are known to present some reliability problems, which can lead to an unreliable behaviour of the supported applications. In this paper, an atomic multicast protocol for CAN networks is proposed. This protocol explores the CAN synchronous properties, providing a timely and reliable service to the supported applications. The implementation of such protocol in Ada, on top of the Ada version of Real-Time Linux is presented, which is used to demonstrate the advantages and disadvantages of the platform to support reliable communications in DCCS.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
Wireless Sensor Networks (WSN) are being used for a number of applications involving infrastructure monitoring, building energy monitoring and industrial sensing. The difficulty of programming individual sensor nodes and the associated overhead have encouraged researchers to design macro-programming systems which can help program the network as a whole or as a combination of subnets. Most of the current macro-programming schemes do not support multiple users seamlessly deploying diverse applications on the same shared sensor network. As WSNs are becoming more common, it is important to provide such support, since it enables higher-level optimizations such as code reuse, energy savings, and traffic reduction. In this paper, we propose a macro-programming framework called Nano-CF, which, in addition to supporting in-network programming, allows multiple applications written by different programmers to be executed simultaneously on a sensor networking infrastructure. This framework enables the use of a common sensing infrastructure for a number of applications without the users having to worrying about the applications already deployed on the network. The framework also supports timing constraints and resource reservations using the Nano-RK operating system. Nano- CF is efficient at improving WSN performance by (a) combining multiple user programs, (b) aggregating packets for data delivery, and (c) satisfying timing and energy specifications using Rate- Harmonized Scheduling. Using representative applications, we demonstrate that Nano-CF achieves 90% reduction in Source Lines-of-Code (SLoC) and 50% energy savings from aggregated data delivery.
Resumo:
This paper describes the use of integer and fractional electrical elements, for modelling two electrochemical systems. A first type of system consists of botanical elements and a second type is implemented by electrolyte processes with fractal electrodes. Experimental results are analyzed in the frequency domain, and the pros and cons of adopting fractional-order electrical components for modelling these systems are compared.
Resumo:
Over the last three decades, computer architects have been able to achieve an increase in performance for single processors by, e.g., increasing clock speed, introducing cache memories and using instruction level parallelism. However, because of power consumption and heat dissipation constraints, this trend is going to cease. In recent times, hardware engineers have instead moved to new chip architectures with multiple processor cores on a single chip. With multi-core processors, applications can complete more total work than with one core alone. To take advantage of multi-core processors, parallel programming models are proposed as promising solutions for more effectively using multi-core processors. This paper discusses some of the existent models and frameworks for parallel programming, leading to outline a draft parallel programming model for Ada.
Resumo:
Most current-generation Wireless Sensor Network (WSN) nodes are equipped with multiple sensors of various types, and therefore support for multi-tasking and multiple concurrent applications is becoming increasingly common. This trend has been fostering the design of WSNs allowing several concurrent users to deploy applications with dissimilar requirements. In this paper, we extend the advantages of a holistic programming scheme by designing a novel compiler-assisted scheduling approach (called REIS) able to identify and eliminate redundancies across applications. To achieve this useful high-level optimization, we model each user application as a linear sequence of executable instructions. We show how well-known string-matching algorithms such as the Longest Common Subsequence (LCS) and the Shortest Common Super-sequence (SCS) can be used to produce an optimal merged monolithic sequence of the deployed applications that takes into account embedded scheduling information. We show that our approach can help in achieving about 60% average energy savings in processor usage compared to the normal execution of concurrent applications.
Resumo:
Several projects in the recent past have aimed at promoting Wireless Sensor Networks as an infrastructure technology, where several independent users can submit applications that execute concurrently across the network. Concurrent multiple applications cause significant energy-usage overhead on sensor nodes, that cannot be eliminated by traditional schemes optimized for single-application scenarios. In this paper, we outline two main optimization techniques for reducing power consumption across applications. First, we describe a compiler based approach that identifies redundant sensing requests across applications and eliminates those. Second, we cluster the radio transmissions together by concatenating packets from independent applications based on Rate-Harmonized Scheduling.
Resumo:
Wireless Sensor Networks (WSNs) are increasingly used in various application domains like home-automation, agriculture, industries and infrastructure monitoring. As applications tend to leverage larger geographical deployments of sensor networks, the availability of an intuitive and user friendly programming abstraction becomes a crucial factor in enabling faster and more efficient development, and reprogramming of applications. We propose a programming pattern named sMapReduce, inspired by the Google MapReduce framework, for mapping application behaviors on to a sensor network and enabling complex data aggregation. The proposed pattern requires a user to create a network-level application in two functions: sMap and Reduce, in order to abstract away from the low-level details without sacrificing the control to develop complex logic. Such a two-fold division of programming logic is a natural-fit to typical sensor networking operation which makes sensing and topological modalities accessible to the user.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil
Resumo:
A brief introduction to the fractional continuous-time linear systems is presented. It will be done without needing a deep study of the fractional derivatives. We will show that the computation of the impulse and step responses is very similar to the classic. The main difference lies in the substitution of the exponential by the Mittag-Leffler function. We will present also the main formulae defining the fractional derivatives.
Resumo:
OBJECTIVE To analyze the association between concentrations of air pollutants and admissions for respiratory causes in children. METHODS Ecological time series study. Daily figures for hospital admissions of children aged < 6, and daily concentrations of air pollutants (PM10, SO2, NO2, O3 and CO) were analyzed in the Região da Grande Vitória, ES, Southeastern Brazil, from January 2005 to December 2010. For statistical analysis, two techniques were combined: Poisson regression with generalized additive models and principal model component analysis. Those analysis techniques complemented each other and provided more significant estimates in the estimation of relative risk. The models were adjusted for temporal trend, seasonality, day of the week, meteorological factors and autocorrelation. In the final adjustment of the model, it was necessary to include models of the Autoregressive Moving Average Models (p, q) type in the residuals in order to eliminate the autocorrelation structures present in the components. RESULTS For every 10:49 μg/m3 increase (interquartile range) in levels of the pollutant PM10 there was a 3.0% increase in the relative risk estimated using the generalized additive model analysis of main components-seasonal autoregressive – while in the usual generalized additive model, the estimate was 2.0%. CONCLUSIONS Compared to the usual generalized additive model, in general, the proposed aspect of generalized additive model − principal component analysis, showed better results in estimating relative risk and quality of fit.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.
Resumo:
In this work we present a classification of some of the existing Penalty Methods (denominated the Exact Penalty Methods) and describe some of its limitations and estimated. With these methods we can solve problems of optimization with continuous, discrete and mixing constrains, without requiring continuity, differentiability or convexity. The boarding consists of transforming the original problem, in a sequence of problems without constrains, derivate of the initial, making possible its resolution for the methods known for this type of problems. Thus, the Penalty Methods can be used as the first step for the resolution of constrained problems for methods typically used in by unconstrained problems. The work finishes discussing a new class of Penalty Methods, for nonlinear optimization, that adjust the penalty parameter dynamically.
Resumo:
Search Optimization methods are needed to solve optimization problems where the objective function and/or constraints functions might be non differentiable, non convex or might not be possible to determine its analytical expressions either due to its complexity or its cost (monetary, computational, time,...). Many optimization problems in engineering and other fields have these characteristics, because functions values can result from experimental or simulation processes, can be modelled by functions with complex expressions or by noise functions and it is impossible or very difficult to calculate their derivatives. Direct Search Optimization methods only use function values and do not need any derivatives or approximations of them. In this work we present a Java API that including several methods and algorithms, that do not use derivatives, to solve constrained and unconstrained optimization problems. Traditional API access, by installing it on the developer and/or user computer, and remote API access to it, using Web Services, are also presented. Remote access to the API has the advantage of always allow the access to the latest version of the API. For users that simply want to have a tool to solve Nonlinear Optimization Problems and do not want to integrate these methods in applications, also two applications were developed. One is a standalone Java application and the other a Web-based application, both using the developed API.