960 resultados para INFLAMMATORY RESPONSES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erectile dysfunction is considered an early clinical manifestation of vascular disease and an independent risk factor for cardiovascular events associated with endothelial dysfunction and increased levels of pro-inflammatory cytokines. Tumor necrosis factor-alpha (TNF-alpha), a pro-inflammatory cytokine, suppresses endothelial nitric oxide synthase (eNOS) expression. Considering that nitric oxide (NO) is of critical importance in penile erection, we hypothesized that blockade of TNF-alpha actions would increase cavernosal smooth muscle relaxation. In vitro organ bath studies were used to measure cavernosal reactivity in wild type and TNF-alpha knockout (TNF-alpha KO) mice and NOS expression was evaluated by western blot. In addition, spontaneous erections (in vivo) were evaluated by videomonitoring the animals (30 minutes). Collagen and elastin expression were evaluated by Masson trichrome and Verhoff-van Gieson stain reaction, respectively. Corpora cavernosa from TNF-alpha KO mice exhibited increased NO-dependent relaxation, which was associated with increased eNOS and neuronal NOS (nNOS) cavernosal expression. Cavernosal strips from TNF-alpha KO mice displayed increased endothelium-dependent (97.4 +/- 5.3 vs. Control: 76.3 +/- 6.3, %) and nonadrenergic-noncholinergic (93.3 +/- 3.0 vs. Control: 67.5 +/- 16.0; 16 Hz) relaxation compared to control animals. These responses were associated with increased protein expression of eNOS and nNOS (P < 0.05). Sympathetic-mediated (0.69 +/- 0.16 vs. Control: 1.22 +/- 0.22; 16 Hz) as well as phenylephrine-induced contractile responses (1.6 +/- 0.1 vs. Control: 2.5 +/- 0.1, mN) were attenuated in cavernosal strips from TNF-alpha KO mice. Additionally, corpora cavernosa from TNF-alpha KO mice displayed increased collagen and elastin expression. In vivo experiments demonstrated that TNF-alpha KO mice display increased number of spontaneous erections. Corpora cavernosa from TNF-alpha KO mice display alterations that favor penile tumescence, indicating that TNF-alpha plays a detrimental role in erectile function. A key role for TNF-alpha in mediating endothelial dysfunction in ED is markedly relevant since we now have access to anti-TNF-alpha therapies. Carneiro FS, Sturgis LC, Giachini FRC, Carneiro ZN, Lima VV, Wynne BM, Martin SS, Brands MW, Tostes RC, and Webb RC. TNF-alpha knockout mice have increased corpora cavernosa relaxation. J Sex Med 2009;6:115-125.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paraventricular nucleus of the hypothalamus (PVN) has been implicated in several aspects of cardiovascular control. Stimulation of the PVN evokes changes in blood pressure and heart rate. Additionally, this brain area is connected to several limbic structures implicated in behavioral control, as well as to forebrain and brainstem structures involved in cardiovascular control. This evidence indicates that the PVN may modulate cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint is an unavoidable stressor that evokes marked and sustained cardiovascular changes, which are characterized by elevated mean arterial pressure (MAP) and an intense heart rate (HR) increase. We report on the effect of inhibition of PVN synapses on MAP and HR responses evoked by acute restraint in rats. Bilateral microinjection of the nonspecific synaptic blocker cobalt (CoCl2, 1mM/100nl) into the PVN did not change the HR response or the initial peak of the MAP response to restraint stress, but reduced the area under the curve of the MAP response. Moreover, bilateral microinjection of cobalt in areas surrounding the PVN did not change the cardiovascular response to restraint. These results indicate that synapses in the PVN are involved in the neural pathway that controls blood pressure changes evoked by restraint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl2 (0.1nmol/100nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective 1-adrenoceptor antagonist WB4101 (15nmol/100nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the 2-adrenoceptor antagonist RX821002 or the -adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that 1-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local 1-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelin-1 (ET-1) and urotensin-II (U-II) are the most potent constrictors of human vessels. Although the cavernosal tissue is highly responsive to ET-1, no information exists on the effects of U-II on cavernosal function. The aim of this study was to characterize ET-1 and U-II responses in corpora cavernosa from rats and mice. Male Wistar rats and C57/BL6 mice were used at 13 weeks. Cumulative concentration-response curves to ET-1, U-II, and IRL-1620, an ET(B) agonist, were performed. ET-1 increased force generation in cavernosal strips from mice and rats, but no response to U-II was observed in the presence or absence of N(omega)-nitro-L-arginine methyl ester (L-NAME), or in strips prestimulated with 20 mM KCI. IRL-1620 did not induce cavernosal contraction even in presence of L-NAME, but induced a cavernosal relaxation that was greater in rats than mice. No relaxation responses to U-II were observed in cavernosal strips precontracted with phenylephrine. mRNA expression of ET-1, ET(A), ET(B), and U-II receptors, but not U-II was observed in cavernosal strips. ET-1, via ET(A) receptors activation, causes contractile responses in cavernosal strips from rats and mice, whereas ET(B) receptor activation produces relaxation. Although the cavernosal tissue expresses U-II receptors, U-II does not induce contractile responses in corpora cavernosa from mice or rats. J Am Soc Hypertens 2008;2(6): 439-447. Published by Elsevier Inc. on behalf of the American Society of Hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we have addressed the role of H2S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H S synthesis inhibitors, DL-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H2S donors, NaHS or Lawesson`s reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB4. Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K-ATP(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K-ATP(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H`S augments neutrophil adhesion and locomotion, by a mechanism dependent on K-ATP(+) channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelins (ETs) are involved in inflammatory events, including pain, fever, edema, and cell migration. ET-1 levels are increased in plasma and synovial membrane of rheumatoid arthritis (RA) patients, but the evidence that ETs participate in RA physiopathology is limited. The present study investigated the involvement of ETs in neutrophil accumulation and edema formation in the murine model of zymosan-induced arthritis. Intra-articular (i.a.) administration of selective ETA or ETB receptor antagonists (BQ-123 and BQ-788, respectively; 15 pmol/cavity) prior to i.a. zymosan injection (500 mu g/cavity) markedly reduced knee-joint edema formation and neutrophil influx to the synovial cavity 6 h and 24 h after stimulation. Histological analysis showed that ETA or ETB receptor blockade suppressed zymosan-induced neutrophil accumulation in articular tissue at 6 h. Likewise, dual blockade of ETA/ETB with bosentan (10 mg/kg, i.v.) also reduced edema formation and neutrophil counts 6 h after zymosan stimulation. Pretreatment with BQ-123 or BQ-788 (i.a.; 15 pmol/cavity) also decreased zymosan-induced TNF-alpha production within 6 h, keratinocyte-derived chemokine/CXCL1 production within 24 h, and leukotriene B-4 at both time-points. Consistent with the demonstration that ET receptor antagonists inhibit zymosan-induced inflammation, i.a. injection of ET-1 (1-30 pmol/cavity) or sarafotoxin S6c (0.1-30 pmol/cavity) also triggered edema formation and neutrophil accumulation within 6 h. Moreover, knee-joint synovial tissue expressed ETA and ETB receptors. These findings suggest that endogenous ETs contribute to knee-joint inflammation, acting through ETA and ETB receptors and modulating edema formation, neutrophil recruitment, and production of inflammatory mediators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medial amygdaloid nucleus (MeA) is involved in the modulation of physiological and behavioral processes, as well as regulation of the autonomic nervous system. Moreover, MeA electrical stimulation evokes cardiovascular responses. Thus, as noradrenergic receptors are present in this structure, the present study tested the effects of local noradrenaline (NA) microinjection into the MeA on cardiovascular responses in conscious rats. Moreover, we describe the types of adrenoceptor involved and the peripheral mechanisms involved in the cardiovascular responses. Increasing doses of NA (3, 9, 27 or 45 nmol/100 nL) microinjected into the MeA of conscious rats caused dose-related pressor and bradycardic responses. The NA cardiovascular effects were abolished by local pretreatment of the MeA with 10 nmol/100 nL of the specific alpha(2)-receptor antagonist RX821002, but were not affected by local pretreatment with 10 nmol/100 nL of the specific alpha(1)-receptor antagonist WB4101. The magnitude of pressor response evoked by NA microinjected into the MeA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), and blocked by intravenous pretreatment with the selective V(1)-vasopressin antagonist dTyr(CH(2))(5)(Me)AVP (50 mu g/kg). In conclusion, our results show that microinjection of NA into the MeA of conscious rats activates local alpha(2)-adrenoceptors, evoking pressor and bradycardic responses, which are mediated by vasopressin release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen Sulfide (H2S) is an endogenous gas involved in several biological functions, including modulation of nociception. However, the mechanisms involved in such modulation are not fully elucidated. The present Study demonstrated that the pretreatment of mice with PAG, a H2S synthesis inhibitor, reduced LPS-induced mechanical paw hypernociception. This inhibition of hypernociception was associated with the prevention of neutrophil recruitment to the plantar tissue. Conversely, PAG had no effect on LPS-induced production of the hypernociceptive cytokines, TNF-alpha, IL-1 beta and CXCL1/KC and on hypernociception induced by PGE(2), a directly acting hypernociceptive mediator. In contrast with the pro-nociceptive role of endogenous H2S. systemic administration of NaHS, a H2S donor, reduced LPS-induced mechanical hypernociception in mice. Moreover, this treatment inhibited mechanical hypernociception induced by PGE(2), suggesting a direct effect of H2S on nociceptive neurons. The antinociceptive mechanism of exogenous H2S depends on K-(ATP)(+) channels since the inhibition of PGE(2) hypernociception by NaHS was prevented by glibenclamide (K-(ATP)(+) channel blocker). Finally, NaHS did not alter the thermal nociceptive threshold in the hot-plate test, confirming that its effect is mainly peripheral. Taken together, these results suggest that H2S has a dual role in inflammatory hypernociception: 1. an endogenous pro-nociceptive effect due to up-regulation of neutrophil migration. and 2. an antinociceptive effect by direct blockade of nociceptor sensitization modulating K-(ATP)(+) channels. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class It expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4(+) (but not CD4(-)) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4(+) cells ex vivo. MK886 blocked induction of CCL17 Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalburnin-restimulated CD4(+) cells initiate eosinophil recruitment which is strictly dependent on LTB4 production. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently obtained evidence points to the involvement of the lateral habenular nuclei (LHb) in the mediation of coping defensive responses to threatening/stressful stimuli. Nevertheless, the role of this brain area in the regulation of defensive responses that have been associated with specific subtypes of anxiety disorders recognized in clinical settings is presently unknown. To address this question, we investigated the effects of either electrolytic lesions or chemical stimulation of the LHb on the defensive behaviors generated in rats by the elevated T-maze. This experimental model allows the measurement, in a same rat, of two defensive behaviors, inhibitory avoidance and escape, that have been related in terms of psychopathology to generalized anxiety and panic disorders, respectively. Bilateral electrolytic lesions of the LHb (1 mA, 10 s) impaired inhibitory avoidance acquisition and facilitated escape performance. On the other hand, chemical stimulation of the LHb by bilateral microinjection of kainic acid (30-60 pmol/0.2 mu L) had the opposite effect, i.e., facilitated inhibitory avoidance and impaired escape. The present results indicate that the LHb exerts an opposed regulatory control on generalized anxiety- and panic-related defensive responses in rats. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The penis is kept in the flaccid state mainly via a tonic activity of norepinephrine and endothelins (ETs). ET-1 is important in salt-sensitive forms of hypertension. We hypothesized that cavernosal responses to ET-1 are enhanced in deoxycorticosterone acetate (DOCA)-salt mice and that blockade of ETA receptors prevents abnormal responses of the corpus cavernosum in DOCA-salt hypertension. Male C57BL/6 mice were unilaterally nephrectomized and treated for 5 weeks with both DOCA and water containing 1% NaCl and 0.2% KCl. Control mice were uninephrectomized and received tap water with no added salt. Animals received either the ETA antagonist atrasentan (5 mg.day(-1).kg(-1) body weight) or vehicle. DOCA-salt mice displayed increased systolic blood pressure (SBP), and treatment with atrasentan decreased SBP in DOCA-salt mice. Contractile responses in cavernosal strips from DOCA-salt mice were enhanced by ET-1, phenylephrine, and electrical field stimulation (EFS) of adrenergic nerves, whereas relaxations were not altered by IRL-1620 (an ETB agonist), acetylcholine, sodium nitroprusside, and EFS of nonadrenergic noncholinergic nerves. PD59089 (an ERK1/2 inhibitor), but not Y-27632 (a Rho-kinase inhibitor), abolished enhanced contractions to ET-1 in cavernosum from DOCA-salt mice. Treatment of DOCA-salt mice with atrasentan did not normalize cavernosal responses. In summary, DOCA-salt treatment in mice enhances cavernosal reactivity to contractile, but not to relaxant, stimuli, via ET-1/ETA receptor-independent mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a modification of the Randall-Sellito test in rats. Neutrophil accumulation into the plantar tissue was determined by the contents of myeloperoxidase activity, whereas cytokines and PGE(2) levels were measured by ELISA and radioimmunoassay, respectively. The pretreatment of rats with fucoidin (a leukocyte adhesion inhibitor) inhibited carrageenan-induced hypernociception in a dose- and time-dependent manner. Inhibition of hypernociception by fucoidin was associated with prevention of neutrophil recruitment, as it did not inhibit the hypernociception induced by the direct-acting hypernociceptive mediators, PGE(2) and dopamine, which cause hypernociception, independent of neutrophils. Fucoidin had no effect on carrageenan-induced TNF-alpha, IL-1 beta, and cytokine-induced neutrophil chemoattractant 1 (CINC-1)/CXCL1 production, suggesting that neutrophils were not the source of hypernociceptive cytokines. Conversely, hypernociception and neutrophil migration induced by TNF-alpha, IL-1 beta, and CINC-1/CXCL1 was inhibited by fucoidin, suggesting that neutrophils are involved in the production of direct-acting hypernociceptive mediators. Indeed, neutrophils stimulated in vitro with IL-1 beta produced PGE(2), and IL-1 beta-induced PGE(2) production in the rat paw was inhibited by the pretreatment with fucoidin. In conclusion, during the inflammatory process, the migrating neutrophils participate in the cascade of events leading to mechanical hypernociception, at least by mediating the release of direct-acting hypernociceptive mediators, such as PGE(2). Therefore, the blockade of neutrophil migration could be a target to development of new analgesic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In rats, conditioned fear to context causes freezing immobility and cardiovascular changes. The dorsal hippocampus (DH) has a critical role in several memory processes, including conditioning fear to contextual information. To explore a possible involvement of the DH in contextual fear conditioning-evoked cardiovascular (mean arterial pressure and heart rate increases) and behavioral (freezing) responses, DH synaptic transmission was temporarily inhibited by bilateral microinjections of 500 nl of the nonselective synapse blocker, cobalt chloride (COCl2, 1 mmol/l), at different periods of the experimental procedure. During re-exposure to the foot shock chamber in which conditioning had taken place, bilateral DH inhibition 10 min before the conditioning session had no effect on either behavioral or cardiovascular responses. Bilateral DH inhibition immediately after the conditioning session (110 min) decreased both behavioral and cardiovascular responses during the context test. Finally, 48 h after the conditioning session, bilateral DH inhibition 10 min before re-exposure to the foot shock chamber significantly reduced cardiovascular responses but not freezing responses. These results suggest that contextual fear conditioning acquisition does not depend on the DH. This structure, however, is crucial for the consolidation of contextual fear. Moreover, although the DH appears to be less important for the behavioral (freezing) changes induced by re-exposure to the aversive conditioned context, it may play an important role on the cardiovascular responses generated by this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

particularly neutrophil chemoattraction. Herein, the role of C5a in the genesis of inflammatory hypernociception was investigated in rats and mice using the specific C5a receptor antagonist PMX53 (AcF-[OP(D-Cha)WR]). Experimental approach: Mechanical hypernociception was evaluated with a modification of the Randall-Selitto test in rats and electronic pressure meter paw test in mice. Cytokines were measured by ELISA and neutrophil migration was determined by myeloperoxidase activity. Key results: Local pretreatment of rats with PMX53 (60-180 mg per paw) inhibited zymosan-, carrageenan-, lipopolysaccharide (LPS)- and antigen-induced hypernociception. These effects were associated with C5a receptor blockade since PMX53 also inhibited the hypernociception induced by zymosan- activated serum and C5a but not by the direct-acting hypernociceptive mediators, prostaglandin E-2 and dopamine. Underlying the C5a hypernociceptive mechanisms, PMX53 did not alter the cytokine release induced by inflammatory stimuli. However, PMX53 inhibited cytokine-induced hypernociception. PMX53 also inhibited the recruitment of neutrophils induced by zymosan but not by carrageenan or LPS, indicating an involvement of neutrophils in the hypernociceptive effect of C5a. Furthermore, the C5a-induced hypernociception was reduced in neutrophil-depleted rats. Extending these findings in rats, blocking C5a receptors also reduced zymosan- induced joint hypernociception in mice. Conclusions and implications: These results suggest that C5a is an important inflammatory hypernociceptive mediator, acting by a mechanism independent of hypernociceptive cytokine release, but dependent on the presence of neutrophils. Therefore, we suggest that inhibiting the action of C5a has therapeutic potential in the control of inflammatory pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IL-33, a new member of the IL-1 family, signals through its receptor ST2 and induces T helper 2 (Th2) cytokine synthesis and mediates inflammatory response. We have investigated the role of IL-33 in antigen-induced hypernociception. Recombinant IL-33 induced cutaneous and articular mechanical hype rn ociception in a time- and dose-dependent manner. The hypernociception was inhibited by soluble (s) ST2 (a decoy receptor of IL-33), IL-1 receptor antagonist (IL-1ra), bosentan [a dual endothelin (ET)(A)/ETB receptor antagonist], clazosentan (an ETA receptor antagonist), or indomethacin (a cyclooxygenase inhibitor). IL-33 induced hypernociception in IL-18(-/-) mice but not in TNFR1(-/-) or IFN gamma(-/-) mice. The IL-33-induced hypernociception was not affected by blocking IL-15 or sympathetic amines (guanethidine). Furthermore, methylated BSA (mBSA)-induced cutaneous and articular mechanical hypernociception depended on TNFR1 and IFN gamma and was blocked by sST2, IL-1ra, bosentan, clazosentan, and indomethacin. mBSA also induced significant IL-33 and ST2 mRNA expression. Importantly, we showed that mBSA induced hypernociception via the IL-33 -> TNF alpha -> IL-1 beta -> IFN gamma -> ET-1 -> PGE(2) signaling cascade. These results therefore demonstrate that IL-33 is a key mediator of immune inflammatory hype rn ociception normally associated with a Th1 type of response, revealing a hitherto unrecognized function of IL-33 in a key immune pharmacological pathway that may be amenable to therapeutic intervention.