969 resultados para IMAGE FORESTING TRANSFORM (IFT)
Resumo:
A modular image capture system with close integration to CCD cameras has been developed. The aim is to produce a system capable of integrating CCD sensor, image capture and image processing into a single compact unit. This close integration provides a direct mapping between CCD pixels and digital image pixels. The system has been interfaced to a digital signal processor board for the development and control of image processing tasks. These have included characterization and enhancement of noisy images from an intensified camera and measurement to subpixel resolutions. A highly compact form of the image capture system is in an advanced stage of development. This consists of a single FPGA device and a single VRAM providing a two chip image capturing system capable of being integrated into a CCD camera. A miniature compact PC has been developed using a novel modular interconnection technique, providing a processing unit in a three dimensional format highly suited to integration into a CCD camera unit. Work is under way to interface the compact capture system to the PC using this interconnection technique, combining CCD sensor, image capture and image processing into a single compact unit. ©2005 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
Accurate and efficient computation of the nearest wall distance d (or level set) is important for many areas of computational science/engineering. Differential equation-based distance/ level set algorithms, such as the hyperbolic-natured Eikonal equation, have demonstrated valuable computational efficiency. Here, in the context, as an 'auxiliary' equation to the main flow equations, the Eikonal equation is solved efficiently with two different finite volume approaches (the cell vertex and cell-centered). Application of the distance solution is studied for various geometries. Moreover, a procedure using the differential field to obtain the medial axis transform (MAT) for different geometries is presented. The latter provides a skeleton representation of geometric models that has many useful analysis properties. As an alternative approach to the pure geometric methods (e.g. the Voronoi approach), the current d-MAT procedure bypasses many difficulties that are usually encountered by pure geometric methods, especially in three dimensional space. It is also shown that the d-MAT approach provides the potential to sculpt/control the MAT form for specialized solution purposes. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Ultrasound elastography tracks tissue displacements under small levels of compression to obtain images of strain, a mechanical property useful in the detection and characterization of pathology. Due to the nature of ultrasound beamforming, only tissue displacements in the direction of beam propagation, referred to as 'axial', are measured to high quality, although an ability to measure other components of tissue displacement is desired to more fully characterize the mechanical behavior of tissue. Previous studies have used multiple one-dimensional (1D) angled axial displacements tracked from steered ultrasound beams to reconstruct improved quality trans-axial displacements within the scan plane ('lateral'). We show that two-dimensional (2D) displacement tracking is not possible with unmodified electronically-steered ultrasound data, and present a method of reshaping frames of steered ultrasound data to retain axial-lateral orthogonality, which permits 2D displacement tracking. Simulated and experimental ultrasound data are used to compare changes in image quality of lateral displacements reconstructed using 1D and 2D tracked steered axial and steered lateral data. Reconstructed lateral displacement image quality generally improves with the use of 2D displacement tracking at each steering angle, relative to axial tracking alone, particularly at high levels of compression. Due to the influence of tracking noise, unsteered lateral displacements exhibit greater accuracy than axial-based reconstructions at high levels of applied strain. © 2011 SPIE.