977 resultados para Hydrothermal Alteration
Resumo:
During Leg 65, 15 holes were drilled at four sites located on young crust in the mouth of the Gulf of California. Quaternary to upper Pliocene hemipelagic sediments above and interlayered within the young basaltic basement were cored. The influence of hot lava, high temperature gradients, and hydrothermal activity on the mineralogy and geochemistry of the terrigenous sediments near contacts with basalts might therefore be expected. The purpose of the present study was to determine the mineralogy and inorganic geochemistry of these sediments and to analyze the nature and extent of low temperature alteration. To this end we studied the mineralogy and inorganic geochemistry of 75 sediment samples, including those immediately overlying uppermost basalts and those from layers alternating with basalts within the basement. We separated three size fractions - <2 µm (clay), 2-20 µm (intermediate), and >20 µm (coarse) - and applied the following mineralogical determinations: x-ray diffraction (XRD), infrared spectroscopy, transmission and scanning electron microscopy, and optical microscopy (for coarse fractions, using thin sections and smear slides). We calculated the percentages of clay minerals using Biscaye's (1964) method, and used routine wet chemical analyses to determine bulk composition and quantitative spectral analyses for trace elements.
Resumo:
The sediments recovered during DSDP Leg 92 (Site 598) include a complete 16 m.y. record of hydrothermal sedimentation along the western flank of the East Pacific Rise at 19°S. Fifty samples from this sediment column were analyzed to test the hypothesis that the REE composition of the hydrothermal component is primarily acquired via scavenging from seawater. Site 598 provides an ideal sample suite for this purpose: the sediments are lithologically "simple," primarily consisting of a mixture of hydrothermal materials and biogenous carbonates; the composition of the hydrothermal component is essentially constant through space and time; and the sediments have undergone minimal diagenetic alteration. The following observations suggest the above-stated hypothesis is true. The Ce anomaly as well as key indices of light and heavy REE behavior all show that the REE pattern of hydrothermal sediments approaches that of seawater with increasing paleodistance from the rise crest. Moreover, shale-normalized REE patterns are similar to that of seawater, varying only in absolute REE content: the REE content increases with distance from the paleo-rise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Based on significant correlative relationships between paleodistance from the rise crest and both the concentration and mass accumulation rates (MARs) of REEs and Fe, we conclude the REEs in the hydrothermal component are derived from the interaction of seawater and Fe in the hydrothermal plume.
Resumo:
Alteration in a submarine remnant volcanic arc should leave an important record of (1) the mineralogy of sea water-volcanic arc rock interaction; (2) the chemistry of solid reaction products; (3) the isotopic characteristics of such reactions (Muehlenbachs and Clayton, 1972; Spooner, Beckinsale, et al , 1977; Spooner, Chapman, et al., 1977); (4) the metallogenesis within such a sequence (Mitchell and Bell, 1973); and (5) the geothermal gradient during the alteration. The volcaniclastic breccias, tuffs, and igneous units of Sites 448 (993 m) and 451 (930.5 m) on the Palau-Kyushu and West Mariana ridges, respectively, are particularly suited for such studies because the thick sequences have remained submarine throughout their history, seemingly unaffected by magmatic or hydrothermal events after cessation of volcanic activity. Also, shipboard observations indicated a change in alteration products with depth. At both sites the igneous units and volcaniclastic rocks were altered to brownish clays and zeolites near the top of the volcanic sequence; to bright blue green clays and zeolites at moderate depths; and to very dark, nearly opaque, forest green clays and zeolites at still greater depths. Native copper occurs both as disseminated pockets in the volcaniclastic breccias and vesicular basalts and as veins in the breccias; native copper is restricted to stratigraphic levels characterized by the absence of sulfides or oxides of copper and iron. Although some native copper is found in vesicles of basalts and may be orthomagmatic, most of it is clearly secondary. Near dikes and sills, higher sulfur fugacity conditions caused the precipitation of iron and copper sulfides with an absence of native copper (Garrels and Christ, 1965). The occurrence of native copper may be an initial stage of Cu metallogenesis that forms porphyry coppers in island arcs (Mitchell and Bell, 1973). This study will address primarily the possibility that hydrothermal sea water interaction with volcanic arc rocks has created the mineralogical and isotopic zonation in Leg 59 cores. Hydrothermal activity can be expected in a rapidly growing island arc and is probably the result of a high geothermal gradient prevalent during arc magmatic activity. The chemical character of the alteration is further discussed by Hajash (1981).
Resumo:
As soon as they are emplaced on the sea floor, oceanic basalts go through a low-temperature alteration process which produces black halos concentrical with exposed surfaces and cracks, whereas the grey internal parts of the basaltic pieces apparently remain unaltered. This paper reports for the first time the occurrence of authigenic siderite and ankerite in oceanic basalts and more particularly in the grey internal parts of the latter. Small (8-50 µm) crystals of zoned siderite and ankerite have been observed in ten vesicles of two samples recovered from DSDP Holes 506G and 507B drilled south of the Galápagos Spreading Center (GSC). These Fe-carbonates show a large range of chemical composition (FeCO3 = 47-88%; CaCO3 = 5-40%; MgCO3 = 1-20%; MnCO3 = 0-11%). Most of them are Ca-richer than siderite reported in the literature. The chemical composition of the carbonate clearly reflects the fluctuation of the fluid chemical composition during crystallization. Mn and at least part of the Fe are thought to be hydrothermal in origin, whereas Mg and probably Ca were provided by seawater. It is proposed that siderite and ankerite formed at relatively low temperature (<85°C) and is metastable. The alteration of the GSC basalts seems to have proceeded in two stages: during the first, reducing stage, pyrite precipitated from hydrothermal fluids. A little further in the rock, siderite precipitated from the fluid which had already been modified by the formation of pyrite, and thus in a microenvironment where particular conditions prevailed (high P_CO2, increasing p_S**2- or increasing pH or increasing or decreasing pe). During the second, oxidizing, stage of alteration, a seawater-dominated fluid allowed crystallization of mixtures of Fe-rich smectites and micas, and Fe-hydroxides forming the black halos in the external portion of the basalt pieces and locally oxidizing pyrite and siderite in their innermost part. It is shown in this paper that, even at its earliest stage, and at low temperature, alteration of the upper oceanic crust (lavas) involves fluids enriched in Fe and Mn, interpreted to be of hydrothermal origin.
Resumo:
This publication considers data on aquatic anomalies (hydrothermal plumes) in the areas of 26° and 29°N of the Mid-Atlantic Ridge (MAR). Mass of hydrothermal iron supply and intensity of iron sedimentation onto the bottom were estimated by means of sediment traps. It was found that the plume of the TAG hydrothermal vent 6 km**3 in volume contained about 67 tons of particulate Fe; the plume of the Broken Spur field (up to 8.24 km**3 in volume) contained 23.5 tons of particulate Fe or less because of its lower concentration. Data on sediment matter fluxes showed that 0.3-0.5% of hydrothermal iron was precipitated immediately from the neutrally buoyant plume onto the bottom; the bulk of iron was dissipated into environment. From dimensions of the plumes, flow dynamics, iron concentrations in the plumes, and amounts of iron supplied by hydrothermal vents, it was found that resident time of the plumes considered was from 5 to 10 days.
Resumo:
The paper reports data on distribution of dissolved (Mn, Zn, Cu, Pb, and Cd) and particulate (Fe, Mn, Zn, Cu, Pb, Ni, and Co) species of metals in hydrothermal plumes above the active TAG and Broken Spur hydrothermal fields (26° N and 29° N in the MAR rift valley, respectively). Sediment trap data on fluxes of hydrothermal sedimentary material in the areas indicate that (i) the predominant Zn source for metalliferous sediments at the TAG field is material precipitating from the neutrally buoyant plume, and (ii) the predominant source of Fe and Co is re-deposited ore material coming from the area of extensive settling of sulfides.
Resumo:
Two genetically different types of authigenic carbonate mounds are studied: (1) from an active hydrothermal field related to serpentinite protrusions in a zone of intersection of a transform fracture zone with the Mid-Atlantic Ridge, (2) from an active field of methane seepings in the Dnieper canyon of the Black sea. General geochemical conditions, under which authigenic carbonate formation occurs within these two fields, were found. They include: presence of reduced H2S, H2, and CH4 gases at absence of free oxygen; high alkalinity of waters participating in carbonate formation; similarity of textural and structural features of authigenic aragonite, which represents the initial carbonate mineral of the mounds; paragenesis of aragonite with sulfide minerals; close relation of carbonate mounds with communities of sulfate-reducing and methane-oxidizing microorganisms. A new mechanism of formation of hydrothermal authigenic carbonates is suggested. It implies their microbial sulfate reduction over hydrogen from fluid in the subsurface mixing zone of hydrothermal solution and adjacent seawater.
Resumo:
Ocean Drilling Program (ODP) Hole 504B near the Costa Rica Rift is the deepest hole drilled in the ocean crust, penetrating a volcanic section, a transition zone and a sheeted dike complex. The distribution of Li and its isotopes through this 1.8-km section of oceanic crust reflects the varying conditions of seawater alteration with depth. The upper volcanic rocks, altered at low temperatures, are enriched in Li (5.6-27.3 ppm) and have heavier isotopic compositions (delta7Li=6.6-20.8?) relative to fresh mid-ocean ridge basalt (MORB) due to uptake of seawater Li into alteration clays. The Li content and isotopic compositions of the deeper volcanic rocks are similar to MORB, reflecting restricted seawater circulation in this section. The transition zone is a region of mixing of seawater with upwelling hydrothermal fluids and sulfide mineralization. Li enrichment in this zone is accompanied by relatively light isotopic compositions (-0.8-2.1?) which signify influence of basalt-derived Li during mineralization and alteration. Li decreases with depth to 0.6 ppm in the sheeted dike complex as a result of increasing hydrothermal extraction in the high-temperature reaction zone. Rocks in the dike complex have variable isotopic values that range from -1.7 to 7.9?, depending on the extent of hydrothermal recrystallization and off-axis low-temperature alteration. Hydrothermally altered rocks are isotopically light because 6Li is preferentially retained in greenschist and amphibolite facies minerals. The delta7Li values of the highly altered rocks of the dike complex are complementary to those of high-temperature mid-ocean ridge vent fluids and compatible to equilibrium control by the alteration mineral assemblage. The inventory of Li in basement rocks permits a reevaluation of the role of oceanic crust in the budget of Li in the ocean. On balance, the upper 1.8 km of oceanic crusts remains a sink for oceanic Li. The observations at 504B and an estimated flux from the underlying 0.5 km of gabbro suggest that the global hydrothermal flux is at most 8*10**9 mol/yr, compatible with geophysical thermal models. This work defines the distribution of Li and its isotopes in the upper ocean crust and provides a basis to interpret the contribution of subducted lithosphere to arc magmas and cycling of crustal material in the deep mantle.