944 resultados para Hydrogenated amorphous carbon - Pretective effects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shrubs play an important role in water-limited agro-silvo-pastoral systems by providing shelter and forage for livestock, for erosion control, to maintain biodiversity, diversifying the landscape, and above all, facilitating the regeneration of trees. Furthermore, the carbon sink capacity of shrubs could also help to mitigate the effects of climate change since they constitute a high proportion of total plant biomass. The contribution of two common extensive native shrub species (Cistus ladanifer L. and Retama sphaerocarpa (L.) Boiss.) to the carbon pool of Iberian dehesas (Mediterranean agro-silvo-pastoral systems) is analyzed through biomass models developed at both individual (biovolume depending) and community level (height and cover depending). The total amount of carbon stored in these shrubs, including above- and belowground biomass, ranges from 1.8 to 11.2 Mg C ha_1 (mean 6.8 Mg C ha_1) for communities of C. ladanifer and from 2.6 to 8.6 Mg C ha_1 (mean 4.5 Mg C ha_1) for R. sphaerocarpa. These quantities account for over 20e30% of the total plant biomass in the system. The potential for carbon sequestration of these shrubs in the studied system ranges 0.10e1.32 Mg C ha_1 year_1 and 0.25e1.25 Mg C ha_1 year_1 for the C. ladanifer and R. sphaerocarpa communities’ respectively

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse-width modulation is widely used to control electronic converters. One of the most frequently used topologies for high DC voltage/low DC voltage conversion is the Buck converter. These converters are described by a second order system with an LC filter between the switching subsystem and the load. The use of a coil with an amorphous magnetic material core rather than an air core permits the design of smaller converters. If high switching frequencies are used to obtain high quality voltage output, then the value of the auto inductance L is reduced over time. Robust controllers are thus needed if the accuracy of the converter response must be preserved under auto inductance and payload variations. This paper presents a robust controller for a Buck converter based on a state space feedback control system combined with an additional virtual space variable which minimizes the effects of the inductance and load variations when a switching frequency that is not too high is applied. The system exhibits a null steady-state average error response for the entire range of parameter variations. Simulation results and a comparison with a standard PID controller are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-arid soils cover a significant area of Earth s land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions fromsemi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20 t ha?1 in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225 kg potentially available N ha?1) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit verywell all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interactwith the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of biochar on the soil carbon mineral- ization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on physicochemical properties and CO2 emissions of a sandy loam soil. For this purpose, soil was amended with three different biochars (BI, BII and BIII) at a rate of 8 wt % and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coef- ficients (r 2 ) greater than 0.97. Results show a negative prim- ing effect in the soil after addition of BI and a positive prim- ing effect in the case of soil amended with BII and BIII. These results can be related to different biochar properties such as carbon content, carbon aromaticity, volatile matter, fixed carbon, easily oxidized organic carbon or metal and phenolic substance content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Farming practices that lead to declining returns and inputs of carbon to soils pose a threat to key soil functions. The EU FP 7 interdisciplinary project Smart SOIL is using scientific testing and modeling to identify management practices that can optimize soil carbon storage and crop productivity. A consultation with advisors and policymakers in six European case study regions seeks to identify barriers to, and incentives for, uptake of such practices. Results from preliminary interviews are reported. Overall advisor and farmer awareness of management practices specifically directed towards soil carbon. is low. Most production- related decisions are taken in the short term, but managing soil carbon needs a long- term approach. Key barriers to uptake of practices include: perceived scientifi c uncertainty about the effi cacy of practices; lack of real life ?best practice? examples to show farmers; diffi culty in demonstrating the positive effects of soil carbon management practices and economic benefi ts over a long time scale; and advisors being unable to provide suitable advice due to inadequate information or training. Most farmers are unconvinced of the economic benefi ts of practices for managing soil carbon. Incentives are therefore needed, either as subsidies or as evidence of the cost effectiveness of practices. All new measures and advice should be integrated into existing programmes to avoid a fragmented policy approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reviews recent literature on hierarchical thermoplastic-based composites that simultaneously incorporate carbon nanotubes (CNTs) and conventional microscale fibers, and discusses the structure?property relationships of the resulting hybrids. The mixing of multiple and multiscale constituents enables the preparation of materials with new or improved properties due to synergistic effects. By exploiting the outstanding mechanical, thermal and electrical properties of CNTs, a new generation of multifunctional high-performance composites suitable for a wide variety of applications can be developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochar is a carbon-rich solid obtained by the thermal decomposition of organic matter under a limited supply of oxygen and at relatively low temperatures. Biochar can be prepared from the pyrolysis of different organic feed- stocks, such as wood and biomass crops, agricultural by-products, different types of waste or paper industry waste materials . The pyrolysis procedure of waste, i.e. sewage sludge, has mainly two advantages, firstly, it removes pathogens from waste and, secondly, biochar can reduce the leaching of heavy metals present in raw sewage sludge. This trend of the use of waste material as feedstocks to the preparation of biochar is increasing in the last years due to industrial development and economic growth imply an increase in waste generation. The application of biochar may have positive effects on soil physical properties as water holding capacity and structure or on soil biological activity and soil quality. Also, biochar can be used to remove water pollutants and can be used in multiple ways in soil remediation due to its adsorption of pesticides or metals. Also, biochar contribute to carbon sequestration due to carbon stability of biochar materials. The objective of this presentation is to review the positive effects of the biochar prepared from organic waste on soil properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El ensamblado de nanotubos de carbono (CNT) como una fibra macroscópica en la cual están orientados preferentemente paralelos entre sí y al eje de la fibra, ha dado como resultado un nuevo tipo de fibra de altas prestaciones derivadas de la explotación eficiente de las propiedades axiales de los CNTs, y que tiene un gran número de aplicaciones potenciales. Fibras continuas de CNTs se produjeron en el Instituto IMDEA Materiales mediante el proceso de hilado directo durante la reacción de síntesis por deposición química de vapores. Uno de los objetivos de esta tesis es el estudio de la estructura de estas fibras mediante técnicas del estado del arte de difracción de rayos X de sincrotrón y la elaboración de un modelo estructural de dicho material. Mediciones texturales de adsorción de gases, análisis de micrografías de electrones y dispersión de rayos X de ángulo alto y bajo (WAXS/SAXS) indican que el material tiene una estructura mesoporosa con una distribución de tamaño de poros ancha derivada del amplio rango de separaciones entre manojos de CNTs, así como una superficie específica de 170m2/g. Los valores de dimensión fractal obtenidos mediante SAXS y análisis Barrett-Joyner-Halenda (BJH) de mediciones texturales coinciden en 2.4 y 2.5, respectivamente, resaltando el carácter de red de la estructura de dichas fibras. La estructura mesoporosa y tipo hilo de las fibra de CNT es accesible a la infiltración de moléculas externas (líquidos o polímeros). En este trabajo se estudian los cambios en la estructura multiescala de las fibras de CNTs al interactuar con líquidos y polímeros. Los efectos de la densificación en la estructura de fibras secas de CNT son estudiados mediante WAXS/SAXS. El tratamiento de densificación junta los manojos de la fibra (los poros disminuyen de tamaño), resultando en un incremento de la densidad de la fibra. Sin embargo, los dominios estructurales correspondientes a la transferencia de esfuerzo mecánica y carga eléctrica en los nanotubos no son afectados durante este proceso de densificación; como consecuencia no se produce un efecto sustancial en las propiedades mecánicas y eléctricas. Mediciones de SAXS and fibra de CNT antes y después de infiltración de líquidos confirman la penetración de una gran cantidad de líquidos que llena los poros internos de la fibra pero no se intercalan entre capas de nanotubos adyacentes. La infiltración de cadenas poliméricas de bajo peso molecular tiende a expandir los manojos en la fibra e incrementar el ángulo de apertura de los poros. Los resultados de SAXS indican que la estructura interna de la fibra en términos de la organización de las capas de tubos y su orientación no es afectada cuando las muestras consisten en fibras infiltradas con polímeros de alto peso molecular. La cristalización de varios polímeros semicristalinos es acelerada por la presencia de fibras de CNTs alineados y produce el crecimiento de una capa transcristalina normal a la superficie de la fibra. Esto es observado directamente mediante microscopía óptica polarizada, y detectado mediante calorimetría DSC. Las lamelas en la capa transcristalina tienen orientación de la cadena polimérica paralela a la fibra y por lo tanto a los nanotubos, de acuerdo con los patrones de WAXS. Esta orientación preferencial se sugiere como parte de la fuerza impulsora en la nucleación. La nucleación del dominio cristalino polimérico en la superficie de los CNT no es epitaxial. Ocurre sin haber correspondencia entre las estructuras cristalinas del polímero y los nanotubos. Estas observaciones contribuyen a la compresión del fenómeno de nucleación en CNTs y otros nanocarbonos, y sientan las bases para el desarrollo de composites poliméricos de gran escala basados en fibra larga de CNTs alineados. ABSTRACT The assembly of carbon nanotubes into a macroscopic fibre material where they are preferentially aligned parallel to each other and to the fibre axis has resulted in a new class of high-performance fibres, which efficiently exploits the axial properties of the building blocks and has numerous applications. Long, continuous CNT fibres were produced in IMDEA Materials Institute by direct fibre spinning from a chemical vapour deposition reaction. These fibres have a complex hierarchical structure covering multiple length scales. One objective of this thesis is to reveal this structure by means of state-of-the-art techniques such as synchrotron X-ray diffraction, and to build a model to link the fibre structural elements. Texture and gas absorption measurements, using electron microscopy, wide angle and small angle X-ray scattering (WAXS/SAXS), and pore size distribution analysis by Barrett-Joyner-Halenda (BJH), indicate that the material has a mesoporous structure with a wide pore size distribution arising from the range of fibre bundle separation, and a high surface area _170m2/g. Fractal dimension values of 2.4_2.5 obtained from the SAXS and BJH measurements highlight the network structure of the fibre. Mesoporous and yarn-like structure of CNT fibres make them accessible to the infiltration of foreign molecules (liquid or polymer). This work studies multiscale structural changes when CNT fibres interact with liquids and polymers. The effects of densification on the structure of dry CNT fibres were measured by WAXS/SAXS. The densification treatment brings the fibre bundles closer (pores become smaller), leading to an increase in fibre density. However, structural domains made of the load and charge carrying nanotubes are not affected; consequently, it has no substantial effect on mechanical and electrical properties. SAXS measurements on the CNT fibres before and after liquid infiltration imply that most liquids are able to fill the internal pores but not to intercalate between nanotubes. Successful infiltration of low molecular weight polymer chains tends to expand the fibre bundles and increases the pore-opening angle. SAXS results indicate that the inner structure of the fibre, in terms of the nanotube layer arrangement and the fibre alignment, are not largely affected when infiltrated with polymers of relatively high molecular weight. The crystallisation of a variety of semicrystalline polymers is accelerated by the presence of aligned fibres of CNTs and results in the growth of a transcrystalline layer perpendicular to the fibre surface. This can be observed directly under polarised optical microscope, and detected by the exothermic peaks during differential scanning calorimetry. The discussion on the driving forces for the enhanced nucleation points out the preferential chain orientation of polymer lamella with the chain axis parallel to the fibre and thus to the nanotubes, which is confirmed by two-dimensional WAXS patterns. A non-epitaxial polymer crystal growth habit at the CNT-polymer interface is proposed, which is independent of lattice matching between the polymer and nanotubes. These findings contribute to the discussion on polymer nucleation on CNTs and other nanocarbons, and their implication for the development of large polymer composites based on long and aligned fibres of CNTs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the adsorption of two structurally similar forms of hemoglobin (met-Hb and HbCO) to a hydrophobic self-assembled methyl-terminated thiol monolayer on a gold surface, by using a Quartz Crystal Microbalance (QCM) technique. This technique allows time-resolved simultaneous measurements of changes in frequency (f) (c.f. mass) and energy dissipation (D) (c.f. rigidity/viscoelastic properties) of the QCM during the adsorption process, which makes it possible to investigate the viscoelastic properties of the different protein layers during the adsorption process. Below the isoelectric points of both met-Hb and HbCO, the ΔD vs. Δf graphs displayed two phases with significantly different slopes, which indicates two states of the adsorbed proteins with different visco-elastic properties. The slope of the first phase was smaller than that of the second phase, which indicates that the first phase was associated with binding of a more rigidly attached, presumably denatured protein layer, whereas the second phase was associated with formation of a second layer of more loosely bound proteins. This second layer desorbed, e.g., upon reduction of Fe3+ of adsorbed met-Hb and subsequent binding of carbon monoxide (CO) forming HbCO. Thus, the results suggest that the adsorbed proteins in the second layer were in a native-like state. This information could only be obtained from simultaneous, time-resolved measurements of changes in both D and f, demonstrating that the QCM technique provides unique information about the mechanisms of protein adsorption to solid surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) and carbon monoxide (CO) seem to be neurotransmitters in the brain. The colocalization of their respective biosynthetic enzymes, neuronal NO synthase (nNOS) and heme oxygenase-2 (HO2), in enteric neurons and altered intestinal function in mice with genomic deletion of the enzymes (nNOSΔ/Δ and HO2Δ/Δ) suggest neurotransmitter roles for NO and CO in the enteric nervous system. We now establish that NO and CO are both neurotransmitters that interact as cotransmitters. Small intestinal smooth muscle cells from nNOSΔ/Δ and HO2Δ/Δ mice are depolarized, with apparent additive effects in the double knockouts (HO2Δ/Δ/nNOSΔ/Δ). Muscle relaxation and inhibitory neurotransmission are reduced in the mutant mice. In HO2Δ/Δ preparations, responses to electrical field stimulation are nearly abolished despite persistent nNOS expression, whereas exogenous CO restores normal responses, indicating that the NO system does not function in the absence of CO generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The respiratory effects of dexmedetomidine were retrospectively examined in 33 postsurgical patients involved in a randomised, placebo-controlled trial after extubation in the intensive care unit (ICU). Morphine requirements were reduced by over 50% in patients receiving dexmedetomidine. There were no differences in respiratory rates, oxygen saturations, arterial pH and arterial partial carbon dioxide tension (PaCO2) between the groups. Interestingly the arterial partial oxygen tension (PaO2) : fractional inspired oxygen (FIO2) ratios were statistically significantly higher in the dexmedetomidine group. Dexmedetomidine provides important postsurgical analgesia and appears to have no clinically important adverse effects on respiration in the surgical patient who requires intensive care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that lead to equilibration of water/energy and nitrogen limitation of net primary productivity. This occurs because as the water flux increases, the potentials for carbon uptake (photosynthesis), and inputs and losses of nitrogen, all increase. As the flux of carbon increases, the amount of nitrogen that can be captured into organic matter and then recycled also increases. Because most plant-available nitrogen is derived from internal recycling, this latter process is critical to sustaining high productivity in environments where water and energy are plentiful. At steady-state, water/energy and nitrogen limitation “equilibrate,” but because the water, carbon, and nitrogen cycles have different response times, inclusion of nitrogen cycling into ecosystem models adds behavior at longer time scales than in purely biophysical models. The tight correlations among nitrogen fluxes with evapotranspiration implies that either climate change or changes to nitrogen inputs (from fertilization or air pollution) will have large and long-lived effects on both productivity and nitrogen losses through hydrological and trace gas pathways. Comprehensive analyses of the role of ecosystems in the carbon cycle must consider mechanisms that arise from the interaction of the hydrological, carbon, and nutrient cycles in ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree rings have been used in various applications to reconstruct past climates as well as to assess the effects of recent climatic and environmental change on tree growth. In this paper we briefly review two ways that tree rings provide information about climate change and CO2: (i) in determining whether recent warming during the period of instrumental observations is unusual relative to prior centuries to millennia, and thus might be related to increasing greenhouse gases; and (ii) in evaluating whether enhanced radial growth has taken place in recent decades that appears to be unexplained by climate and might instead be due to increasing atmospheric CO2 or other nutrient fertilization. It is found that a number of tree-ring studies from temperature-sensitive settings indicate unusual recent warming, although there are also exceptions at certain sites. The present tree-ring evidence for a possible CO2 fertilization effect under natural environmental conditions appears to be very limited.