990 resultados para Hydrogen yield
Resumo:
High strength steels can suffer from a loss of ductility when exposed to hydrogen, and this may lead to sudden failure. The hydrogen is either accommodated in the lattice or is trapped at defects, such as dislocations, grain boundaries and carbides. The challenge is to identify the effect of hydrogen located at different sites upon the drop in tensile strength of a high strength steel. For this purpose, literature data on the failure stress of notched and un-notched steel bars are re-analysed; the bars were tested over a wide range of strain rates and hydrogen concentrations. The local stress state at failure has been determined by the finite element (FE) method, and the concentration of both lattice and trapped hydrogen is predicted using Oriani's theory along with the stress-driven diffusion equation. The experimental data are rationalised in terms of a postulated failure locus of peak maximum principal stress versus lattice hydrogen concentration. This failure locus is treated as a unique material property for the given steel and heat treatment condition. We conclude that the presence of lattice hydrogen increases the susceptibility to hydrogen embrittlement whereas trapped hydrogen has only a negligible effect. It is also found that the observed failure strength of hydrogen charged un-notched bars is less than the peak local stress within the notched geometries. Weakest link statistics are used to account for this stressed volume effect. © 2013 Elsevier Ltd.
Resumo:
Pt/AlGaN/AIN/GaN high electron mobility transistors (HEMT) were fabricated and characterized for hydrogen sensing. Pt and Ti/Al/Ni/Au metals were evaporated to form the Schottky contact and the ohmic contact, respectively. The sensors can be operated in either the field effect transistor (FET) mode or the Schottky diode mode. Current changes and time dependence of the sensors under the FET and diode modes were compared. When the sensor was operated in the FET mode, the sensor can have larger current change of 8 mA, but its sensitivity is only about 0.2. In the diode mode, the current change was very small under the reverse bias but it increased greatly and gradually saturated at 0.8 mA under the forward bias. The sensor had much higher sensitivity when operated in the diode mode than in the FET mode. The oxygen in the air could accelerate the desorption of the hydrogen and the recovery of the sensor. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Pt/AlGaN/AIN/GaN Schottky diodes are fabricated and characterized for hydrogen sensing. The Pt Schottky contact and the Ti/Al/Ni/Au ohmic contact are formed by evaporation. Both the forward and reverse currents of the device increase greatly when exposed to hydrogen gas. A shift of 0.3 V at 300K is obtained at a fixed forward current after switching from N-2 to 10%H-2+N-2. The sensor responses under different concentrations from 50ppm H-2 to 10%H-2+N-2 at 373K are investigated. Time dependences of the device forward current at 0.5 V forward bias in N-2 and air atmosphere at 300 and 373K are compared. Oxygen in air accelerates the desorption of the hydrogen and the recovery of the sensor. Finally, the decrease of the Schottky barrier height and sensitivity of the sensor are calculated.
Resumo:
We studied the effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films deposited by radio frequency magnetron sputtering. It is found that the ZnO H film is highly transparent with the average transmittance of 92% in the visible range. Both carrier concentration and mobility are increased after hydrogen plasma treatment, correspondingly, the resistivity of the ZnO H films achieves the order of 10(-3) cm. We suggest that the incorporated hydrogen not only passivates most of the defects and/or acceptors present, but also introduces shallow donor states such as the V-O-H complex and the interstitial hydrogen H-i. Moreover, the annealing data indicate that H-i is unstable in ZnO, while the V-O-H complex remains stable on the whole at 400 degrees C, and the latter diffuses out when the annealing temperature increases to 500 degrees C. These results make ZnO H more attractive for future applications as transparent conducting electrodes.
Resumo:
The ZnO films deposited by magnetron sputtering were treated by H/O plasma. It is found that the field emission (FE) characteristics of the ZnO film are considerably improved after H-plasma treatment and slightly deteriorated after O-plasma treatment. The improvement of FE characteristics is attributed to the reduced work function and the increased conductivity of the ZnO H films. Conductive atomic force microscopy was employed to investigate the effect of the plasma treatment on the nanoscale conductivity of ZnO, these findings correlate well with the FE data and facilitate a clearer description of electron emission from the ZnO H films.
Resumo:
Hydrogenated amorphous silicon-carbon (a-SiC:H) films were deposited by plasma enhanced chemical vapor deposition (PECVD) with a fixed methane to silane ratio ([CH4]/[SiH4]) of 1.2 and a wide range of hydrogen dilution (R-H=[H-2]/[SiH4 + CH4]) values of 12, 22, 33, 102 and 135. The impacts of RH on the structural and optical properties of the films were investigated by using UV-VIS transmission, Fourier transform infrared (FTIR) absorption, Raman scattering and photoluminescence (PL) measurements. The effects of high temperature annealing on the films were also probed. It is found that with increasing hydrogen dilution, the optical band gap increases, and the PL peak blueshifts from similar to1.43 to 1.62 eV. In annealed state, the room temperature PL peak for the low R-H samples disappears, while the PL peak for the high R-H samples appears at similar to 2.08 eV, which is attributed to nanocrystalline Si particles confined by Si-C and Si-O bonds.
Resumo:
The hydrogen dilution profiling (HDP) technique has been developed to improve the quality and the crystalline uniformity in the growth direction of mu c-Si:H thin films prepared by hot-wire chemical-vapor deposition. The high H dilution in the initial growth stage reduces the amorphous transition layer from 30-50 to less than 10 nm. The uniformity of crystalline content X-c in the growth direction was much improved by the proper design of hydrogen dilution profiling which effectively controls the nonuniform transition region of Xc from 300 to less than 30 nm. Furthermore, the HDP approach restrains the formation of microvoids in mu c-Si: H thin films with a high Xc and enhances the compactness of the film. As a result the stability of mu c-Si: H thin films by HDP against the oxygen diffusion, as well as the electrical property, is much improved. (c) 2005 American Institute of Physics.