905 resultados para Human papillomavirus 16
Resumo:
High-level expression of the human growth hormone (hGH) gene is limited to somatotrope and lactosomatotrope cells of the anterior pituitary. We previously identified a locus control region (LCR) for the hGH gene composed of four tissue-specific DNase I-hypersensitive sites (HS) located between −14.6 kb and −32 kb 5′ to the hGH transcription start site that is responsible for establishing a physiologically regulated chromatin domain for hGH transgene expression in mouse pituitary. In the present study we demonstrated that the LCR mediates somatotrope and lactosomatotrope restriction on an otherwise weakly and diffusely expressed hGH transgene. The subregion of the LCR containing the two pituitary-specific HS, HSI and HSII (−14.6 to −16.2 kb relative to the hGH promoter and denoted HSI,II), was found to be sufficient for mediating somatotrope and lactosomatotrope restriction, for appropriately timed induction of hGH transgene expression between embryonic days 15.5 and 16.5, and for selective extinction of hGH expression in mature lactotropes. When studied by cell transfection, the HSI,II fragment selectively enhanced transcription in a presomatotrope-derived cell line, although at levels (2- to 3-fold) well below that seen in vivo. The LCR activity of the HSI,II element was therefore localized by scoring transgene expression in fetal founder pituitaries at embryonic day 18.5. The data from these studies indicated that a 404-bp segment of the HSI,II region encodes a critical subset of LCR functions, including the establishment of a productive chromatin environment, cell-specific restriction and enhancement of expression, and appropriately timed induction of the hGH transgene during embryonic development.
Resumo:
FULL-malaria is a database for a full-length-enriched cDNA library from the human malaria parasite Plasmodium falciparum (http://133.11.149.55/). Because of its medical importance, this organism is the first target for genome sequencing of a eukaryotic pathogen; the sequences of two of its 14 chromosomes have already been determined. However, for the full exploitation of this rapidly accumulating information, correct identification of the genes and study of their expression are essential. Using the oligo-capping method, we have produced a full-length-enriched cDNA library from erythrocytic stage parasites and performed one-pass reading. The database consists of nucleotide sequences of 2490 random clones that include 390 (16%) known malaria genes according to BLASTN analysis of the nr-nt database in GenBank; these represent 98 genes, and the clones for 48 of these genes contain the complete protein-coding sequence (49%). On the other hand, comparisons with the complete chromosome 2 sequence revealed that 35 of 210 predicted genes are expressed, and in addition led to detection of three new gene candidates that were not previously known. In total, 19 of these 38 clones (50%) were full-length. From these observations, it is expected that the database contains ∼1000 genes, including 500 full-length clones. It should be an invaluable resource for the development of vaccines and novel drugs.
Resumo:
The ability to isolate fetal nucleated red blood cells (NRBCs) from the maternal circulation makes possible prenatal genetic analysis without the need for diagnostic procedures that are invasive for the fetus. Such isolation requires antibodies specific to fetal NRBCs. To generate a panel of antibodies to antigens present on fetal NRBCs, a new type of nonimmune phage antibody library was generated in which multiple copies of antibody fragments are displayed on each phage. Antibody fragments specific for fetal NRBCs were isolated by extensive predepletion of the phage library on adult RBCs and white blood cells (WBCs) followed by positive selection and amplification on fetal liver erythroid cells. After two rounds of selection, 44% of the antibodies analyzed bound fetal NRBCs, with two-thirds of these showing no binding of WBCs. DNA fingerprint analysis revealed the presence of at least 16 unique antibodies. Antibody specificity was confirmed by flow cytometry, immunohistochemistry, and immunofluorescence of total fetal liver and adult RBCs and WBCs. Antibody profiling suggested the generation of antibodies to previously unknown fetal RBC antigens. We conclude that multivalent display of antibodies on phage leads to efficient selection of panels of specific antibodies to cell surface antigens. The antibodies generated to fetal RBC antigens may have clinical utility for isolating fetal NRBCs from maternal circulation for noninvasive prenatal genetic diagnosis. Some of the antibodies may also have possible therapeutic utility for erythroleukemia.
Resumo:
Electron microscopy of human skin fibroblasts syringe-loaded with human immunodeficiency virus type 1 protease (HIV-1 PR) revealed several effects on nuclear architecture. The most dramatic is a change from a spherical nuclear morphology to one with multiple lobes or deep invaginations. The nuclear matrix collapses or remains only as a peripheral rudiment, with individual elements thicker than in control cells. Chromatin organization and distribution is also perturbed. Attempts to identify a major nuclear protein whose cleavage by the protease might be responsible for these alterations were unsuccessful. Similar changes were observed in SW 13 T3 M [vimentin+] cells, whereas no changes were observed in SW 13 [vimentin−] cells after microinjection of protease. Treatment of SW 13 [vimentin−] cells, preinjected with vimentin to establish an intermediate filament network, with HIV-1 PR resulted in alterations in chromatin staining and distribution, but not in nuclear shape. These same changes were produced in SW 13 [vimentin−] cells after the injection of a mixture of vimentin peptides, produced by the cleavage of vimentin to completion by HIV-1 PR in vitro. Similar experiments with 16 purified peptides derived from wild-type or mutant vimentin proteins and five synthetic peptides demonstrated that exclusively N-terminal peptides were capable of altering chromatin distribution. Furthermore, two separate regions of the N-terminal head domain are primarily responsible for perturbing nuclear architecture. The ability of HIV-1 to affect nuclear organization via the liberation of vimentin peptides may play an important role in HIV-1-associated cytopathogenesis and carcinogenesis.
Resumo:
We have generated a human 293-derived retroviral packaging cell line (293GPG) capable of producing high titers of recombinant Moloney murine leukemia virus particles that have incorporated the vesicular stomatitis virus G (VSV-G) protein. To achieve expression of the retroviral gag-pol polyprotein, the precise coding sequences for gag-pol were introduced into a vector which utilizes totally nonretroviral signals for gene expression. Because constitutive expression of the VSV-G protein is toxic in 293 cells, we used the tetR/VP 16 transactivator and teto minimal promoter system for inducible, tetracycline-regulatable expression of VSV-G. After stable transfection of the 293GPG packaging cell line with the MFG.SnlsLacZ retroviral vector construct, it was possible to readily isolate stable virus-producing cell lines with titers approaching 10(7) colony-forming units/ml. Transient transfection of 293GPG cells using a modified version of MFG.SnlsLacZ, in which the cytomegalovirus IE promoter was used to drive transcription of the proviral genome, led to titers of approximately 10(6) colony-forming units/ml. The retroviral/VSV-G pseudotypes generated using 293GPG cells were significantly more resistant to human complement than commonly used amphotropic vectors and could be highly concentrated (> 1000-fold). This new packaging cell line may prove to be particularly useful for assessing the potential use of retroviral vectors for direct in vivo gene transfer. The design of the cell line also provides at least theoretical advantages over existing cell lines with regard to the possible release of replication-competent virus.
Resumo:
Peripheral blood lymphocytes (PBLs) are an important target for gene transfer studies aimed at human gene therapy. However, no reproducibly efficient methods are currently available to transfer foreign, potentially therapeutic genes into these cells. While vectors derived from murine retroviruses have been the most widely used system, their low infection efficiency in lymphocytes has required prolonged in vitro culturing and selection after infection to obtain useful numbers of genetically modified cells. We previously reported that retroviral vectors pseudotyped with vesicular stomatitis G glycoprotein (VSV-G) envelope can infect a wide variety of cell types and can be concentrated to titers of greater than 10(9) infectious units/ml. In this present study, we examined the ability of amphotropic and pseudotyped vectors expressing a murine cell surface protein, B7-1, to infect the human T-cell line Jurkat or human blood lymphocytes. Limiting dilution analysis of transduced Jurkat cells demonstrated that the pseudotyped vector is significantly more efficient in infecting T cells than an amphotropic vector used at the same multiplicity of infection (moi). To identify the transduction efficiency on PBLs, we examined the levels of cell surface expression of the B7-1 surface marker 48 to 72 hr after infection. The transduction efficiency of PBLs with the pseudotyped vector increased linearly with increasing moi to a maximum of approximately 16-32% at an moi of 40. This relatively high efficiency of infection of a T-cell line and of blood lymphocytes with VSV-G pseudotyped virus demonstrates that such modified pseudotyped retrovirus vectors may be useful reagents for studies of gene therapy for a variety of genetic or neoplastic disorders.
Resumo:
A unique gene, RBP-MS, spanning over 230 kb in the human chromosome 8p11-12 near the Werner syndrome gene locus is described. The single-copy RBP-MS gene is alternatively spliced, resulting in a family of at least 12 transcripts (average length of 1.5 kb). Nine different types of cDNAs that encode an RNa-binding motif at the N terminus and helix-rich sequences at the C terminus have been identified thus far. Among the 16 exons identified, four 5'-proximal exons contained sequences homologous to the RNA-binding domain of Drosophila couch potato gene. Northern blot analysis showed that the RBP-MS gene was expressed strongly in the heart, prostate, intestine, and ovary, and poorly in the skeletal muscle, spleen, thymus, brain, and peripheral leukocytes. The possible role of this gene in RNA metabolism is discussed.
Resumo:
Human complement factor H controls spontaneous activation of complement in plasma and appears to play a role in distinguishing host cells from activators of the alternative pathway of complement. In both mice and humans, the protein is composed of 20 homologous short consensus repeat (SCR) domains. The size of the protein suggests that portions of the structure outside the known C3b binding site (SCR 1-4) possess a significant biological role. We have expressed the full-length cDNA of factor H in the baculovirus system and have shown the recombinant protein to be fully active. Mutants of this full-length protein have now been prepared, purified, and examined for cofactor activity and binding to C3b and heparin. The results demonstrate (i) that factor H has at least three sites that bind C3b, (ii) that one of these sites is located in SCR domains 1-4, as has been shown by others, (iii) that a second site exists in the domain 6-10 region, (iv) that a third site resides in the SCR 16-20 region, and (v) that two heparin binding sites exist in factor H, one near SCR 13 and another in the SCR 6-10 region. Functional assays demonstrated that only the first C3b site located in SCR 1-4 expresses factor I cofactor activity. Mutant proteins lacking any one of the three C3b binding sites exhibited 6- to 8-fold reductions in affinity for C3b on sheep erythrocytes, indicating that all three sites contribute to the control of complement activation on erythrocytes. The identification of multiple functionally distinct sites on factor H clarifies many of the heretofore unexplainable behaviors of this protein, including the heterogeneous binding of factor H to surface-bound C3b, the effects of trypsin cleavage, and the differential control of complement activation on activators and nonactivators of the alternative pathway of complement.
Resumo:
Na+-phosphate (Pi) cotransport across the renal brush border membrane is the rate limiting step in the overall reabsorption of filtered Pi. Murine and human renal-specific cDNAs (NaPi-7 and NaPi-3, respectively) related to this cotransporter activity (type II Na+-Pi cotransporter) have been cloned. We now report the cloning and characterization of the corresponding mouse (Npt2) and human (NPT2) genes. The genes were cloned by screening mouse genomic and human chromosome 5-specific libraries, respectively. Both genes are approximately 16 kb and are comprised of 13 exons and 12 introns, the junctions of which conform to donor and acceptor site consensus sequences. Putative CAAT and TATA boxes are located, respectively, at positions -147 and -40 of the Npt2 gene and -143 and -51 of the NPT2 gene, relative to nucleotide 1 of the corresponding cDNAs. The translation initiation site is within exon 2 of both genes. The first 220 bp of the mouse and human promoter regions exhibit 72% identity. Two transcription start sites (at positions -9 and - 10 with respect to nucleotide 1 of NaPi-7 cDNA) and two polyadenylylation signals were identified in the Npt2 gene by primer extension, 5' and 3' rapid amplification of cDNA ends (RACE). A 484-bp 5' flanking region of the Npt2 gene, comprising the CAAT box, TATA box, and exon 1, was cloned upstream of a luciferase reporter gene; this construct significantly stimulated luciferase gene expression, relative to controls, when transiently transfected into OK cells, a renal cell line expressing type II Na+ -Pi cotransporter activity. The present data provide a basis for detailed analysis of cis and trans elements involved in the regulation of Npt2/NPT2 gene transcription and facilitate screening for mutations in the NPT2 gene in patients with autosomally inherited disorders of renal Pi reabsorption.
Resumo:
Recent progress in the structural identification of human melanoma antigens recognized by autologous cytotoxic T cells has led to the recognition of a new melanocyte differentiation antigen, Melan-A(MART-1). To determine the properties of the Melan-A gene product, Melan-A recombinant protein was produced in Escherichia coli and used to generate mouse monoclonal antibodies (mAbs). Two prototype mAbs, A103 and A355, were selected for detailed study. Immunoblotting results with A103 showed a 20-22-kDa doublet In Melan-A mRNA positive melanoma cell lines and no reactivity with Melan-A mRNA-negative cell lines. A355, in addition to the 20-22-kDa doublet, recognized several other protein species in Melan-A mRNA-positive cell lines. Immunocytochemical assays on cultured melanoma cells showed specific and uniform cytoplasmic staining in Melan-A mRNA-positive cell lines. Immunohistochemical analysis of normal human tissues with both mAbs showed staining of adult melanocytes and no reactivity with the other normal tissues tested. Analysis of 21 melanoma specimens showed homogenous staining of tumor cell cytoplasm in 16 of 17 Melan-A mRNA-positive cases and no reactivity with the three Melan-A mRNA-negative cases.
Resumo:
Semaphorins and collapsins make up a family of conserved genes that encode nerve growth cone guidance signals. We have identified two additional members of the human semaphorin family [human semaphorin A(V) and human semaphorin IV] in chromosome region 3p21.3, where several small cell lung cancer (SCLC) cell lines exhibit homozygous deletions indicative of a tumor suppressor gene. Human semaphorin A(V) has 86% amino acid homology with murine semaphorin A, whereas semaphorin IV is most closely related to murine semaphorin E, with 50% homology. These semaphorin genes are approximately 70 kb apart flanking two GTP-binding protein genes, GNAI-2 and GNAT-1. In contrast, other human semaphorin gene sequences (human semaphorin III and homologues of murine semaphorins B and C) are not located on chromosome 3. Human semaphorin A(V) is translated in vitro into a 90-kDa protein, which accumulates at the endoplasmic reticulum. The human semaphorin A(V) (3.4-kb mRNA) and IV (3.9- and 2.9-kb mRNAs) genes are expressed abundantly but differentially in a variety of human neural and nonneural tissues. Human semaphorin A(V) was expressed in only 1 out of 23 SCLCs and 7 out of 16 non-SCLCs, whereas semaphorin IV was expressed in 19 out of 23 SCLCs and 13 out of 16 non-SCLCs. Mutational analysis in semaphorin A(V) revealed mutations (germ line in one case) in 3 of 40 lung cancers. Our data suggest the need to determine the function of human semaphorins A(V) and IV in nonneural tissues and their role in the pathogenesis of lung cancer.
Resumo:
In tuberculosis, Mycobacterium tuberculosis (MTB)-stimulated T-cell responses are depressed transiently, whereas antibody levels are increased. Lymphoproliferative responses of peripheral blood mononuclear cells (PBMCs) from Pakistani tuberculosis (TB) patients to both mycobacterial and candidal antigens were suppressed by approximately 50% when compared to healthy purified protein derivative (PPD)-positive household contacts. Production of interferon gamma (IFN-gamma) in response to PPD also was depressed by 78%. Stimulation with PPD and the 30-kDa alpha antigen of MTB (30-kDa antigen) induced greater secretion of transforming growth factor beta (TGF-beta), but not interleukin 10 (IL-10) or tumor necrosis factor alpha (TNF-alpha), by PBMCs from TB patients compared to healthy contacts. The degree of suppression correlated with the duration of treatment; patients treated for <1 month had significantly lower T-cell blastogenesis and IFN-gamma production and higher levels of TGF-beta than did patients treated for >1 month. Neutralizing antibody to TGF-beta normalized lymphocyte proliferation in response to PPD, partially restored blastogenesis to candidal antigen, and significantly increased PPD-stimulated production of IFN-gamma in TB patients but not in contacts. Neutralizing antibody to IL-10 augmented, but did not normalize, T-cell responses to both PPD and candida in TB patients and candidal antigen in contacts. TGF-beta, produced in response to MTB antigens, therefore plays a prominent role in down-regulating potentially protective host effector mechanisms and looms as an important mediator of immunosuppression in TB.
Resumo:
The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is expected to dimerize into a two-headed molecule. The C terminus of its tail shares homology with the membrane-binding domain of the band 4.1 protein superfamily. The gene consists of 48 coding exons. It encodes several alternatively spliced forms. In situ hybridization analysis in human embryos demonstrates that the myosin VIIA gene is expressed in the pigment epithelium and the photoreceptor cells of the retina, thus indicating that both cell types may be involved in the USH1B retinal degenerative process. In addition, the gene is expressed in the human embryonic cochlear and vestibular neuroepithelia. We suggest that deafness and vestibular dysfunction in USH1B patients result from a defect in the morphogenesis of the inner ear sensory cell stereocilia.
Resumo:
The ribonucleolytic activity of angiogenin (Ang) is essential to Ang's capacity to induce blood vessel formation. Previous x-ray diffraction and mutagenesis results have shown that the active site of the human protein is obstructed by Gln-117 and imply that the C-terminal region of Ang must undergo a conformational rearrangement to allow substrate binding and catalysis. As a first step toward structural characterization of this conformational change, additional site-directed mutagenesis and kinetic analysis have been used to examine the intramolecular interactions that stabilize the inactive conformation of the protein. Two residues of this region, Ile-119 and Phe-120, are found to make hydrophobic interactions with the remainder of the protein and thereby help to keep Gln-117 in its obstructive position. Furthermore, the suppression of activity by the intramolecular interactions of Ile-119 and Phe-120 is counterbalanced by an effect of the adjacent residues, Arg-121, Arg-122, and Pro-123 which do not appear to form contacts with the rest of the protein structure. They contribute to enzymatic activity, probably by constituting a peripheral subsite for binding polymeric substrates. The results reveal the nature of the conformational change in human Ang and assign a key role to the C-terminal region both in this process and, presumably, in the regulation of human Ang function.