993 resultados para Hughes, Brandun
Resumo:
A Newton–Raphson solution scheme with a stress point algorithm is presented for the implementation of an elastic–viscoplastic soilmodel in a finite element program. Viscoplastic strain rates are calculated using the stress and volumetric states of the soil. Sub-incrementsof time are defined for each iterative calculation of elastic–viscoplastic stress changes so that their sum adds up to the time incrementfor the load step. This carefully defined ‘iterative time’ ensures that the correct amount of viscoplastic straining is accumulated overthe applied load step. The algorithms and assumptions required to implement the solution scheme are provided. Verification of the solutionscheme is achieved by using it to analyze typical boundary value problems.
Resumo:
This paper develops an improved and accessible framework for modelling time-dependent behaviour of soils using the concepts of elasticity and viscoplasticity. The mathematical description of viscoplastic straining is formulated based on a purely viscoplastic and measurable phenomenon, namely creep. The resulting expression for the viscoplastic strain rates includes a measure of both effective stress and the corresponding volumetric packing of the soil particles. In this way, the model differs from some earlier viscoplastic models and arguably provides a better conceptual description of time-dependent behaviour. Analytical solutions are developed for the simulation of drained and undrained strain-controlled triaxial compression tests. The model is then used to back-analyze the measured response of normally consolidated to moderately overconsolidated specimens of a soft estuarine soil in undrained triaxial compression. The model captures aspects of soil behaviour that cannot be simulated using time-independent elastic–plastic models. Specifically, it can capture the dependence of stress–strain relationships and undrained shear strength on strain rate, the development of irrecoverable plastic strains at constant stress (creep), and the relaxation of stresses at constant strain
Resumo:
Seismic refraction and electrical resistivity geophysical techniques were used to reconstruct the internal architecture of a drumlin in Co. Down, Northern Ireland. Geophysical results were both validated and complemented by borehole drilling, ground water flow modelling, and geologic mapping. The geophysical anatomy of the drumlin consists of five successive layers with depth including; topsoil, partially saturated and saturated glacial tills, and weathered and more competent greywacke bedrock. There are numerous, often extensive inclusions of clay, sand, gravel, cobbles, and boulders within the topsoil and the till units. Together geophysical and geotechnical findings imply that the drumlin is part of the subglacial lodgement, melt-out, debris flow, sheet flow facies described by previous authors, and formed by re-sedimentation and streamlining of pre-existing sediments during deglaciation of the Late Devensian ice sheet. Seismic refraction imaging is particularly well suited to delineating layering within the drumlin, and is able to reconstruct depths to interfaces to within ± 0.5 m accuracy. Refraction imaging ascertained that the weathered bedrock layer is continuous and of substantial thickness, so that it acts as a basal aquifer which underdrains the bulk of the drumlin. Electrical resistivity imaging was found to be capable of delineating relative spatial changes in the moisture content of the till units, as well as mapping sedimentary inclusions within the till. The moisture content appeared to be elevated near the margins of the drumlin, which may infer a weakening of the drumlin slopes. Our findings advocate the use of seismic refraction and electrical resistivity methods in future sedimentological and geotechnical studies of internal drumlin architecture and drumlin formation, owing particularly to the superior, 3- D spatial coverage of these methods.
Resumo:
A new elastic–viscoplastic (EVP) soil model has been used to simulate the measured deformation response of a soft estuarine soil loaded by a stage-constructed embankment. The simulation incorporates prefabricated vertical drains installed in the foundation soils and reinforcement installed at the base of the embankment. The numerical simulations closely matched the temporal changes in surface settlement beneath the centerline and shoulder of the embankment. More importantly, the elastic–viscoplastic model simulated the pattern and magnitudes of the lateral deformations beneath the toe of the embankment — a notoriously difficult aspect of modelling the deformation response of soft soils. Simulation of the excess pore-water pressure proved more difficult because of the heterogeneous nature of the estuarine deposit. Excess pore-water pressures were, however, mapped reasonably well at three of the six monitoring locations. The simulations were achieved using a small set of material constants that can easily be obtained from standard laboratory tests. This study validates the use of the EVP model for problems involving soft soil deposits beneath loading from a geotechnical structure.