941 resultados para Hoya fungi
Resumo:
Fungi belonging to the genus of Alternaria are recognised as being significant plant pathogens, and Alternaria allergens are one of themost important causes of respiratory allergic diseases in Europe. This study aims to provide a detailed and original analysis of Alternaria transport dynamics in Badajoz, SW Spain. This was achieved by examining daily mean and hourly observations of airborne Alternaria spores recorded during days with high airborne concentrations of Alternaria spores (N100 s m−3) from 2009 to 2011, as well as four inventory maps of major Alternaria habitats, the overall synoptic weather situation and analysis of air mass transport using Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information systems. Land use calculated within a radius of 100 km from Badajoz shows that crops and grasslands are potentially the most important local sources of airborne Alternaria spores recorded at the site. The results of back trajectory analysis showthat, during the examined four episodes, the two main directions where Alternaria source areas were located were: (1) SW–W; and (2) NW–NE. Regional scale and long distance transport could therefore supplement the airborne catch recorded at Badajoz with Alternaria conidia originating from sources such as crops and orchards situated in other parts of the Iberian Peninsula.
Resumo:
Background: Having previously investigated the dispersal by different hand drying methods of a chemical indicator, fungi and bacteria on the hands of users, this new study assessed the potential for viral dispersal. Aims/Objectives: To determine differences between hand drying methods in their capacity to disperse viruses on the hands of users to other occupants of public washrooms and into the washroom environment. Method: A harmless virus was used to artificially contaminate the hands of participants prior to using three different hand drying devices (jet air dryer, warm air dryer, paper towel dispenser). Viral dispersal was assessed at different heights and distances from the hand drying devices and also at different times after use by means of an air sampler. Results: The jet air dryer was shown to produce significantly more dispersal of virus than the warm air dryer or paper towels. After use of the jet air dryer, high numbers of virus were detected at a range of heights with maximum numbers between 0.61 and 1.22 metres. Virus was also detected at distances of up to 3 metres from the jet air dryer and in the air for up to 15 minutes after its use. The warm air dryer and paper towel dispenser produced low or zero viral counts at different heights, different distances and times after use. Conclusion: Jet air dryers have a greater potential than other hand drying methods to disperse viruses on the hands and contaminate other occupants of a public washroom and the washroom environment.
Resumo:
Background World Health Organization hand hygiene guidelines state that if electric hand dryers are used, they should not aerosolize pathogens. Previous studies have investigated the dispersal by different hand-drying devices of chemical indicators, fungi and bacteria on the hands. This study assessed the aerosolization and dispersal of virus on the hands to determine any differences between hand-drying devices in their potential to contaminate other occupants of public washrooms and the washroom environment. Methods A suspension of MS2, an Escherichia coli bacteriophage virus, was used to artificially contaminate the hands of participants prior to using three different handdrying devices: jet air dryer, warm air dryer, paper towel dispenser. Virus was detected by plaque formation on agar plates layered with the host bacterium. Vertical dispersal of virus was assessed at a fixed distance (0.4 m) and over a range of different heights (0.0 – 1.8 m) from the floor. Horizontal dispersal was assessed at different distances of up to three metres from the hand-drying devices. Virus aerosolization and dispersal was also assessed at different times up to 15 minutes after use by means of air sampling at two distances (0.1 and 1.0 m) and at a distance behind and offset from each of the hand-drying devices. Results Over a range of heights, the jet air dryer was shown to produce over 60 times greater vertical dispersal of virus from the hands than a warm air dryer and over 1300 times greater than paper towels; the maximum being detected between 0.6 and 1.2 metres from the floor. Horizontal dispersal of virus by the jet air dryer was over 20 times greater than a warm air dryer and over 190 times greater than paper towels; virus being detected at distances of up to three metres. Air sampling at three different positions from the hand-drying devices 15 minutes after use showed that the jet air dryer produced over 50-times greater viral contamination of the air than a warm air dryer and over 110-times greater than paper towels. Conclusions Due to their high air speed, jet air dryers aerosolize and disperse more virus over a range of heights, greater distances, and for longer times than other hand drying devices. If hands are inadequately washed, they have a greater potential to contaminate other occupants of a public washroom and the washroom environment. Main messages: Jet air dryers with claimed air speeds of over 600 kph have a greater potential than warm air dryers or paper towels to aerosolize and disperse viruses on the hands of users. The choice of hand-drying device should be carefully considered. Jet air dryers may increase the risk of transmission of human viruses, such as norovirus, particularly if hand washing is inadequate.
Resumo:
Background World Health Organization and EU hand hygiene guidelines state that if electric hand dryers are used, they should not aerosolize pathogens. Previous studies have investigated the dispersal by different hand-drying devices of chemical indicators, fungi and bacteria on the hands. This study assessed the aerosolization and dispersal of virus on the hands to determine any differences between hand-drying devices in their potential to contaminate other occupants of public washrooms and the washroom environment. Methods A suspension of MS2, an Escherichia coli bacteriophage virus, was used to artificially contaminate the hands of participants prior to using three different hand-drying devices: jet air dryer, warm air dryer, paper towel dispenser. Virus was detected by plaque formation on agar plates layered with the host bacterium. Vertical dispersal of virus was assessed at a fixed distance (0.4 m) and over a range of different heights (0.0 – 1.8 m) from the floor. Horizontal dispersal was assessed at different distances of up to three metres from the hand-drying devices. Virus aerosolization and dispersal was also assessed at different times up to 15 minutes after use by means of air sampling at two distances (0.1 and 1.0 m) and at a distance behind and offset from each of the hand-drying devices. Results Over a range of heights, the jet air dryer was shown to produce over 60 times greater vertical dispersal of virus from the hands than a warm air dryer and over 1300 times greater than paper towels; the maximum being detected between 0.6 and 1.2 metres from the floor. Horizontal dispersal of virus by the jet air dryer was over 20 times greater than a warm air dryer and over 190 times greater than paper towels; virus being detected at distances of up to three metres. Air sampling at three different positions from the hand-drying devices 15 minutes after use showed that the jet air dryer produced over 50-times greater viral contamination of the air than a warm air dryer and over 110-times greater than paper towels. Conclusions Due to their high air speed, jet air dryers aerosolize and disperse more virus over a range of heights, greater distances, and for longer times than other hand drying devices. If hands are inadequately washed, they have a greater potential to contaminate other occupants of a public washroom and the washroom environment. Main messages: Jet air dryers with claimed air speeds of over 600 kph have a greater potential than warm air dryers or paper towels to aerosolize and disperse viruses on the hands of users. The choice of hand-drying device should be carefully considered. Jet air dryers may increase the risk of transmission of human viruses, such as norovirus, particularly if hand washing is inadequate.
Resumo:
1972
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil
Resumo:
The presence of filamentous fungi was detected in wastewater and air collected at wastewater treatment plants (WWTP) from several European countries. The aim of the present study was to assess fungal contamination in two WWTP operating in Lisbon. In addition, particulate matter (PM) contamination data was analyzed. To apply conventional methods, air samples from the two plants were collected through impaction using an air sampler with a velocity air rate of 140 L/min. Surfaces samples were collected by swabbing the surfaces of the same indoor sites. All collected samples were incubated at 27°C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. For molecular methods, air samples of 250 L were also collected using the impinger method at 300 L/min airflow rate. Samples were collected into 10 ml sterile phosphate-buffered saline with 0.05% Triton X-100, and the collection liquid was subsequently used for DNA extraction. Molecular identification of Aspergillus fumigatus and Stachybotrys chartarum was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR Detection System (Corbett). Assessment of PM was also conducted with portable direct-reading equipment (Lighthouse, model 3016 IAQ). Particles concentration measurement was performed at five different sizes: PM0.5, PM1, PM2.5, PM5, and PM10. Sixteen different fungal species were detected in indoor air in a total of 5400 isolates in both plants. Penicillium sp. was the most frequently isolated fungal genus (58.9%), followed by Aspergillus sp. (21.2%) and Acremonium sp. (8.2%), in the total underground area. In a partially underground plant, Penicillium sp. (39.5%) was also the most frequently isolated, also followed by Aspergillus sp. (38.7%) and Acremonium sp. (9.7%). Using RT-PCR, only A. fumigatus was detected in air samples collected, and only from partial underground plant. Stachybotrys chartarum was not detected in any of the samples analyzed. The distribution of particle sizes showed the same tendency in both plants; however, the partially underground plant presented higher levels of contamination, except for PM2.5. Fungal contamination assessment is crucial to evaluating the potential health risks to exposed workers in these settings. In order to achieve an evaluation of potential health risks to exposed workers, it is essential to combine conventional and molecular methods for fungal detection. Protective measures to minimize worker exposure to fungi need to be adopted since wastewater is the predominant internal fungal source in this setting.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Edificações
Resumo:
A Qualidade do Ar Interior (QAI) é um fator de grande preocupação. A importância de manter um ambiente salubre é mais acentuada em estabelecimentos escolares (EE), tendo em conta, que no interior destes permanecem crianças durante um elevado período de tempo. É fundamental garantir uma boa QAI nos edifícios escolares, de forma a salvaguardar a saúde, o bem-estar e o conforto dos ocupantes, bem como, não comprometer o seu desempenho escolar. Recentemente, foram construídos novos edifícios escolares e alguns dos existentes foram alvo de obras de remodelação. Contudo, a crescente tendência em construir edifícios cada vez mais herméticos, com vista à diminuição dos gastos de energia, origina problemas como a reduzida ventilação dos espaços. Vários estudos têm demonstrado a influência das atividades de limpeza na QAI. No entanto, verifica-se que na maioria das escolas não existem ainda procedimentos de limpeza padronizados. A falta de instruções de trabalho e a ausência de formação às assistentes operacionais pode comprometer a eficácia dos procedimentos de higienização, o que poderá ter influência na QAI dos espaços. Este estudo teve como principal objetivo avaliar a QAI em escolas básicas de 1.º ciclo. Foram contemplados no estudo fatores como a tipologia do edifício, a ocupação das salas e as atividades de limpeza. Procedeu-se à caracterização dos EE e à monitorização de parâmetros ambientais, como a temperatura do ar, a humidade relativa, a velocidade do ar, o dióxido de carbono, o monóxido de carbono, as partículas, os microrganismos mesófilos totais e os fungos. Estes parâmetros foram avaliados nas salas com ocupação, sem ocupação e durante a implementação de um plano de higienização. A ventilação inadequada parece ser o fator que mais condiciona a QAI das salas de aula avaliadas. Registaram-se elevadas concentrações de dióxido de carbono e de microrganismos mesófilos totais, que parecem estar relacionados com a permanência dos ocupantes nos locais e com a falta de ventilação adequada dos espaços. A concentração de dióxido de carbono foi mais elevada em edifícios recentes. Os picos elevados na concentração de partículas parecem estar associados com as atividades dos ocupantes. Obtiveram-se concentrações menores de fungos e de microrganismos mesófilos totais ao longo da implementação do plano de higienização, o que poderá significar que os procedimentos de limpeza contribuem para reduzir os níveis de contaminação dos espaços interiores. No entanto, tendo em conta, que a concentração de microrganismos mesófilos totais permaneceu elevada, as operações de limpeza parecem não ser suficientes para garantir uma boa QAI. O aumento da ventilação dos espaços poderia contribuir significativamente para a melhoria da QAI dos espaços avaliados.
Resumo:
Nesta dissertação procurou-se comparar os desempenhos de três produtos de proteção da madeira quando expostos a várias condições de degradação. Tendo em consideração a grande quantidade de variáveis quando se faz este tipo de estudos, tentou-se controlar o maior número possível destas, de modo a permitir a comparação com outros estudos que venham a ser feitos futuramente. O objetivo a longo prazo é a contribuição desta dissertação para um conjunto de resultados cada vez mais abrangente, facilitando a escolha do utilizador, quando pretender proteger a madeira das agressões exteriores com este tipo de produtos. A principal conclusão nesta dissertação é que a agressividade do meio tem um papel determinante para os resultados obtidos, bem como as condições de inclinação e orientação da madeira. Situações de má selagem de topos ou não consideração da presença agentes biológicos são outros dois fatores que influenciam a durabilidade da construção. Finalmente, concluiu-se que não existem soluções únicas, tendo que se estudar caso a caso, quais as condições exatas de exposição, de forma a escolher o produto, ou produtos, mais adequados.
Resumo:
Recent studies suggest that sand can serve as a vehicle for exposure of humans to pathogens at beach sites, resulting in increased health risks. Sampling for microorganisms in sand should therefore be considered for inclusion in regulatory programmes aimed at protecting recreational beach users from infectious disease. Here, we review the literature on pathogen levels in beach sand, and their potential for affecting human health. In an effort to provide specific recommendations for sand sampling programmes, we outline published guidelines for beach monitoring programmes, which are currently focused exclusively on measuring microbial levels in water. We also provide background on spatial distribution and temporal characteristics of microbes in sand, as these factors influence sampling programmes. First steps toward establishing a sand sampling programme include identifying appropriate beach sites and use of initial sanitary assessments to refine site selection. A tiered approach is recommended for monitoring. This approach would include the analysis of samples from many sites for faecal indicator organisms and other conventional analytes, while testing for specific pathogens and unconventional indicators is reserved for high-risk sites. Given the diversity of microbes found in sand, studies are urgently needed to identify the most significant aetiological agent of disease and to relate microbial measurements in sand to human health risk.
Resumo:
Fitness centres are special places where conditions for microbiological proliferation should be considered. Moisture due to human perspiration and water condensation as a result of human physical activities are prevalent in this type of buildings. Exposure to microbial contaminants is clinically associated with respiratory disorders and people who work out in polluted environments would be susceptible to contaminants. This work studied the indoor air contamination in three gymnasiums in Lisbon. The sampling was performed at two periods: at the opening (morning) and closing (night) of the three gymnasiums. The airborne bacterial and fungal populations were sampled by impaction directly onto Tryptic Soy Agar (for bacteria) and Malt Extract Agar (for fungi) plates, using a Merck MAS-100 air sampler. Higher bacterial concentrations were found at night as compared to the morning but the same behaviour was not found for fungal concentrations. Gram-negative catalase positive cocci were the dominant bacteria in indoor air samples of the studied gymnasiums. In this study, 21 genera/species of fungal colonies were identified. Chrysosporium sp., Chrysonilia sp., Neoscytalidium hialinum, Sepedonium sp. and Penicillium sp. were the most prevalent species identified in the morning, while Cladosporium sp., Penicillium sp., Chrysosporium sp., Acremonium sp. and Chrysonilia sp. were more prevalent at night. A well-designed sanitation and maintenance program for gymnasiums is needed to ensure healthier space for indoor physical activity.
Resumo:
This paper refers to the assessment on site by semi-destructive testing (SDT) methods of the consolidation efficiency of a conservation process developed by Henriques (2011) for structural and non-structural pine wood elements in service. This study was applied on scots pine wood (Pinus sylvestris L.) degraded by fungi after treatment with a biocidal product followed by consolidation with a polymeric product. This solution avoids substitutions of wood moderately degraded by fungi, improving its physical and mechanical characteristics. The consolidation efficiency was assessed on site by methods of drill resistance and penetration resistance. The SDT methods used showed good sensitivity to the conservation process and could evaluate their effectiveness. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Cork stopper manufacturing process includes an operation, known as stabilisation, by which humid cork slabs are extensively colonised by fungi. The effects of fungal growth on cork are yet to be completely understood and are considered to be involved in the so called “cork taint” of bottled wine. It is essential to identify environmental constraints which define the appearance of the colonising fungal species and to trace their origin to the forest and/or as residents in the manufacturing space. The present article correlates two sets of data, from consecutive years and the same season, of systematic biologic sampling of two manufacturing units, located in the North and South of Portugal. Chrysonilia sitophila dominance was identified, followed by a high diversity of Penicillium species. Penicillium glabrum, found in all samples, was the most frequent isolated species. P. glabrum intra-species variability was investigated using DNA fingerprinting techniques revealing highly discriminative polymorphic markers in the genome. Cluster analysis of P. glabrum data was discussed in relation to the geographical location of strains, and results suggest that P. glabrum arise from predominantly the manufacturing space, although cork resident fungi can also contrib
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology