981 resultados para Historical investigation
Resumo:
Large single crystal of triglycine sulphate (dimension 100 mm along monoclinic b-axis and 15 mm in diameter) was grown using the unidirectional solution growth technique. The X-ray diffraction studies confirmed the growth/long axis to be b-axis (polar axis). The dielectric studies were carried out at various temperatures to establish the phase transition temperature. The frequency response of the dielectric constant, dielectric loss and impedance of the crystal along the growth axis, was monitored. These are typically characterized by strong resonance peaks in the kHz region. The piezoelectric coefficients like stiffness constant (C), elastic coefficient (S), electromechanical coupling coefficient (k) and d (31) were calculated using the resonance-antiresonance method. Polarization (P)-Electric field (E) hysteresis loops were recorded at various temperatures to find the temperature-dependent spontaneous polarization of the grown crystal. The pyroelectric coefficients were determined from the pyroelectric current measurement by the Byer and Roundy method. The ferroelectric domain patterns were recorded on (010) plane using scanning electron microscopy and optical microscopy.
Resumo:
Ambient-condition Raman spectra were collected in the strongly correlated NiS(1-x)Se(x) pyrite (0 <= x <= 1.2). Two samples (x = 0 and x = 0.55) were studied as a function of pressure up to 10 GPa, and for the x = 0.55 sample the pressure dependence of the infrared reflectivity was also measured (0-10 GPa). This gave a complete picture of the optical response of that system on approaching the metallic state both by application of pressure and/or by Se alloying, which corresponds to a volume expansion. A peculiar nonmonotonic (V-shaped) volume dependence was found for the quasiparticle spectral weight of both pure and Se-doped compounds. In the x = 0.55 sample the vibrational frequencies of the chalcogen dimer show an anomalous volume dependence on entering the metallic phase. The abrupt softening observed, particularly significant for the Se-Se pair, indicates the relevant role of the softness of the Se-Se bond as previously suggested by theoretical calculations.
Resumo:
Although some researchers have published friction and wear data of Plasma Nitride (PN) coatings, the tribological behavior of PN/PN Pairs in high vacuum environment has not been published so far In order to bridge this knowledge gap, tribological tests under dry conditions have been conducted on PN/PN Pairs for varying temperatures of 25, 200, 400 and 500 degrees C in high vacuum (1.6 x 10(-4) bar) environment. The PN coatings showed good wear resistance layer on the ring surface. The PN coatings were removed only from the pin surface for all the tests since it contacts at a point. The friction and wear were low at lower temperatures and it eliminated adhesion between the contact surfaces until the coating was completely removed from the pin surface. (C) 2011 Journal of Mechanical Engineering. All rights reserved.
Resumo:
Increasing concentrations of atmospheric carbon dioxide (CO(2)) influence climate by suppressing canopy transpiration in addition to its well- known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO(2) concentrations using the National Center for Atmospheric Research's (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO(2) levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO(2) levels implies that incremental warming associated with the physiological effect of CO(2) will not abate at higher CO(2) concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO(2) emissions.
Resumo:
Castor oil-based poly(mannitol-citric sebacate) was synthesized by simple, catalyst-free melt condensation process using monomers having potential to be metabolized in vivo. The polymer was characterized using various techniques and the tensile and hydration properties of the polymers were also determined. The biocompatibility of the polymer was tested using human foreskin fibroblasts cells. The in vitro degradation studies show that the time for complete degradation of the polymer was more than 21 days. The usage of castor oil polyester as a drug carrier was analysed by doping the polymer with 5-fluorouracil model drug and the release rate was studied by varying the percentage loading of drugs and the pH of the PBS solution medium. The cumulative drug-release profiles exhibited a biphasic release with an initial burst release and cumulative 100% release within 42 h. To understand the role of the polymer as a drug carrier in the release behaviour, drug-release studies were conducted with another drug, isoniazid. The release behaviour of isoniazid drug from the same polymer matrix followed an nth order kinetic model and 100% cumulative release was achieved after 12 days. The variation in the release behaviour for two model drugs from the same polymer matrix suggests a strong interaction between the polymer and the drug molecule.
Resumo:
A terrestrial biosphere model with dynamic vegetation capability, Integrated Biosphere Simulator (IBIS2), coupled to the NCAR Community Atmosphere Model (CAM2) is used to investigate the multiple climate-forest equilibrium states of the climate system. A 1000-year control simulation and another 1000-year land cover change simulation that consisted of global deforestation for 100 years followed by re-growth of forests for the subsequent 900 years were performed. After several centuries of interactive climate-vegetation dynamics, the land cover change simulation converged to essentially the same climate state as the control simulation. However, the climate system takes about a millennium to reach the control forest state. In the absence of deep ocean feedbacks in our model, the millennial time scale for converging to the original climate state is dictated by long time scales of the vegetation dynamics in the northern high latitudes. Our idealized modeling study suggests that the equilibrium state reached after complete global deforestation followed by re-growth of forests is unlikely to be distinguishable from the control climate. The real world, however, could have multiple climate-forest states since our modeling study is unlikely to have represented all the essential ecological processes (e. g. altered fire regimes, seed sources and seedling establishment dynamics) for the reestablishment of major biomes.
Resumo:
Energy and charge aspects of two types of ion association - between oppositely-charged and between like-charged species - were quantified using the topological analysis of the electron density function derived from the low-temperature X-ray diffraction experiment for a crystal of aminoacetonitrile picrate (sp. gr. Cmca, Z = 8, R = 0.0187), providing an experimental evidence of their ``equal rights'' in crystal packing formation.
Resumo:
Laminar forced convection heat transfer from two-dimensional sudden expansion flow of different nanofluids is studied numerically. The governing equations are solved using the unsteady stream function-vorticity method. The effect of volume fraction of the nanoparticles and type of nanoparticles on heat transfer is examined and found to have a significant impact. Local and average Nusselt numbers are reported in connection with various nanoparticle, volume fraction, and Reynolds number for expansion ratio 2. The Nusselt number reaches peak values near the reattachment point and reaches asymptotic value in the downstream. Bottom wall eddy and volume fraction shows a significant impact on the average Nusselt number.
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Present work describes the characterization of commercially available ZnO and its electrochemical investigation of dopamine in the presence of ascorbic acid. ZnO was characterized by powder XRD, UV-visible absorption, fluorescence, infrared spectroscopy and scanning electron microscopy. The carbon paste electrode was modified with ZnO and ZnO/polyglycine for further electrochemical investigation of dopamine. The modified electrode shows good electrocatalytic activity towards the detection of dopamine with a reduction in overpotential. The ZnO/polyglycine modified carbon paste electrode (CPE/ZnO/Pgl) shows excellent electrochemical enhancement of peak currents for both dopamine (DA) and ascorbic acid (AA) and for simultaneous detection of DA in the presence of high concentrations of AA with 0.214 V oxidation peak potential differences between them at pH 7.4. From the scan rate variation and concentration, the oxidation of DA and AA was found to be adsorption-controlled. The use of CPE/ZnO/Pgl is demonstrated for the detection of DA in blood serum and injection samples. This journal is © The Royal Society of Chemistry 2012.
Resumo:
Thyroxine is a naturally occurring human hormone produced by the thyroid gland. Clinical applications of thyroxine to treat several chronic disorders are limited by poor water solubility and instability under physiological conditions. An inclusion complex of levo-thyroxine (l-thyroxine), the active form of the hormone with gamma cyclodextrin (gamma-CD) has been obtained and studied with the aim of improving oral delivery rather than the injection formulation of the sodium salt. In addition to greater patient acceptability, inclusion complexes often improve aqueous solubility and bioavailability, stability, and reduce toxicity of drugs, thus providing enhanced pharmaceutical formulations. Physicochemical characterization of the inclusion complex was carried out using Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy and proton nuclear magnetic resonance spectroscopy. Intermolecular dipolar interactions for the inclusion complex were also studied using 2 dimensional ROESY experiments. Formation of the inclusion complex between the protons H3 and H5 of cyclodextrin with aromatic protons of thyroxine was confirmed by their dipolar interaction. Molecular modelling was used to understand the basis for the complex formation and predict the formation of other complexes. Interestingly, we found that l-thyroxine forms an inclusion complex only with the larger gamma-CD and not with other available alpha and beta forms.
Resumo:
Voltage source inverters (VSIs) supply nonsinusoidal voltages to induction motor drives, leading to line current distortion and torque pulsation. Conventional space vector pulsewidth modulation (PWM) techniques are widely used in VSIs on the account of good waveform quality and high dc bus utilization. In a conventional space vector PWM technique, the switching sequence begins with one zero state and ends with the other zero state in a subcycle. Some novel switching sequences have been proposed, which employ only one zero state but apply one of the two active states twice in a subcycle. One pair of such special switching sequences has recently been shown to reduce the pulsating torque considerably. In this paper, the conventional and special switching sequences are compared experimentally in terms of acoustic noise. In the low-and medium-speed ranges, the special switching sequence is seen to reduce the amplitude of the tonal component of noise at the switching frequency considerably and is also found to result in spread spectrum.