829 resultados para Hexagonal boron nitride
Resumo:
In this work we study the spectrum (bulk and surface modes) of exciton-polaritons in infinite and semi-infinite binary superlattices (such as, ···ABABA···), where the semiconductor medium (A), whose dielectric function depends on the frequency and the wavevector, alternating with a standard dielectric medium B. Here the medium A will be modeled by a nitride III-V semiconductor whose main characteristic is a wide-direct energy gap Eg. In particular, we consider the numerical values of gallium nitride (GaN) with a crystal structure wurtzite type. The transfer-matrix formalism is used to find the exciton-polariton dispersion relation. The results are obtained for both s (TE mode: transverse electric) and p (TM mode: transverse magnetic) polarizations, using three diferent kind of additional boundary conditions (ABC1, 2 e 3) besides the standard Maxwell's boundary conditions. Moreover, we investigate the behavior of the exciton-polariton modes for diferent ratios of the thickness of the two alternating materials forming the superlattice. The spectrums shows a confinement of the exciton-polariton modes due to the geometry of the superlattice. The method of Attenuated Total Reflection (ATR) and Raman scattering are the most adequate for probing this excitations
Resumo:
Iron nitrite films, with hundred of nanometers thick, were deposited using the Cathodic cage plasma nitriding method, with a N2/H2 plasma, over a common glass substract. The structure, surface morphology and magnetic properties were investigated using X-ray diffractometry (XRD), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). XRD shows the formation of γ FeN phase and a combination of ζFe2N + ɛFe3N phases. The film s saturation magnetization and coercivity depends on morphology, composition, grain size and treatment temperature. Temperature raising from 250 ºC to 350 ºC were followed by an increase in saturation magnetization and film s surface coercivity on the parallel direction in relative proportion. This fact can be attributed to the grain sizes and to the different phases formed, since iron rich fases, like the ɛFe3N phase, emerges more frequently on more elevated treatment s temperature. Using this new and reasonably low cost method, it was possible to deposit films with both good adhesion and good magnetic properties, with wide application in magnetic devices
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A tendência mundial é o aumento da produtividade e da produção de peças cada vez mais sofisticadas, com elevado grau de tolerância geométrica, dimensional, com bom acabamento superficial, com baixo custo. A retificação é responsável pelo acabamento final no processo de usinagem de um material. No entanto, danos gerados nesta fase de produção comprometem todos os recursos utilizados nas fases anteriores. Grande parte dos problemas ocorridos na retificação deve-se à enorme temperatura gerada pelo processo devido às condições de usinagem. Atribui-se à velocidade de avanço, que está diretamente relacionada com a produtividade, os danos ocorridos na retificação, ficando esta variável limitada até valores que não proporcione danos. Neste trabalho, através da variação da velocidade de avanço no processo de retificação cilíndrica externa do aço ABNT D6, racionalizando a aplicação de dois fluidos de corte e usando um rebolo superabrasivo de CBN (nitreto de boro cúbico) com ligante vitrificado, avaliou-se a influência da velocidade de avanço nos danos superficiais de aços endurecidos. Os resultados permitiram concluir que a velocidade de avanço associada a uma eficiente refrigeração e lubrificação, não provocou danos térmicos (queima, trincas, tensões de tração) ao material. Tensões residuais e a rugosidade do material retificado apresentaram uma correlação com as condições de usinagem. O trabalho concluiu ser capaz um aumento dos índices de produtividade sem provocar danos nos componentes retificados.
Resumo:
The world tendency is the increase of the productivity and the production of pieces more and more sophisticated, with high degree of geometric and dimensional tolerances, with good surface finish and low cost. Rectification is responsible for the final finish in the machining process of a material. However, damages generated in this production phase affect all the resources used in the previous processes. Great part of the problems happennig in the rectification process is due to the enormous temperature generated in this activity because of the machining conditions. The dive speed, which is directly related to the productivity, is considered responsible for the damages that occur during rectification, limiting its values to those that do not cause such damages. In this work, through the variation of the dive speed in the process of cylindrical grinding of type ABNT D6 steel, rationalizing the application of two cutting fluids and using a CBN (cubic boron nitrate) abrasive wheel with vitrified blond, the influence of the dive speed on the surface damages of hardened steels was evaluated. The results allowed to say that the dive speed, associated to an efficient cooling and lubrication, didn't provoke thermal damages (including heated zones, cracks and tension stresses) to the material. Residual stresses and the roughness of rectified materials presented a correlation with the machining conditions. The work concluded that it is possible to increase the productivity without provoking damages in the rectified components.
Resumo:
Ti-6Al-4V alloy is one of the most frequently used Ti alloys with diverse applications in aerospace and biomedical areas due to its favorable mechanical properties, corrosion resistance and biocompatibility. Meanwhile, its surface can stiffer intense corrosion caused by wear processes due to its poor tribological properties. Thus in the present study, PIII processing of Ti-6Al-4V alloy was carried out to evaluate its corrosion resistance in 3.5% NaCl solution. Two different sets of Ti-6Al-4V samples were PIII treated, varying the plasma gases and the treatment time. The corrosion behavior is correlated with the surface morphology, and the nitrogen content. SEM micrographs of the untreated sample reveal a typical two-phase structure. PIII processing promotes surface sputtering and the surface morphology is completely different for samples treated with N-2/H-2 mixture and N-2 only. The highest penetration of nitrogen (similar to 88 nm), corresponding to 33% of N-2 was obtained for the sample treated with N-2/H-2 mixture for 1:30 h. The corrosion behavior of the samples was investigated by a potentiodynamic polarization method. A large passive region of the polarization curves (similar to 1.5 V), associated with the formation of a protective film, was observed for all samples. The passive current density (similar to 3 x 10(-6) A cm(-2)) of the PIII-treated Ti-6Al-4V samples is about 10 times higher than for the untreated sample. This current value is still rather low and maintains good corrosion resistance. The anodic branches of the polarization curves for all treated Ti-6Al-4V samples demonstrate also that the oxide films break down at approximately 1.6 V, forming an active region. Although the sample treated by N-2/H-2 mixture for 1.30 It has thicker nitrogen enriched layer, better corrosion resistance is obtained for the PIII process performed with N, gas only. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Surfaces of silicon wafers implanted with N and C, respectively, and aluminum 5052 implanted with N alone by plasma immersion ion implantation WHO were probed by a nanoindentor and analyzed by the contact-angle method to provide information on surface nanohardness and wettability. Silicon nitride and silicon carbide are important ceramic materials for microelectronics, especially for high-temperature applications. These compounds can be synthesized by high-dose ion implantation. The nanohardness of a silicon sample implanted with 12-keV nitrogen PIII (with 3 X 10(17) cm(-2) dose) increased by 10% compared to the unimplanted sample, in layers deeper than the regions where the formation of the Si,N, compound occurred. A factor of 2.5 increase in hardness was obtained for C-implanted Si wafer at 35 keV (with 6 X 10(17) cm(-2) dose), again deeper than the SiC-rich layer, Both compounds are in the amorphous state and their hardness is much lower than that of the crystalline compounds, which require an annealing process after ion implantation. In the same targets, the contact angle increased by 65% and 35% for N- and C-implanted samples, respectively. Compared to the Si target, the nitrogen PIII-irradiated Al 5052 (wish 15 keV) showed negligible change in its hydrophobic character after ion implantation. Its near-surface nanohardness measurement showed a slight increase for doses of 1 X 10(17) cm(-2). We have been searching for an AlN layer of the order of 1000 A thick, using such a low-energy PIII process, but oxide formation during processing has precluded its synthesis. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Electrochemical corrosion measurements of AISI H13 steel treated by Pill process in 3.5% (wt) NaCl solution were investigated. So far the corrosion behavior of AISI H 13 steel by Pill has not been studied. The electrochemical results are correlated with the surface morphology, nitrogen content and hardness of the nitride layer. Ion implantation of nitrogen into H 13 steel was carried out by Pill technique. SEM examination revealed a generalized corrosion and porosity over all analyzed sample surfaces. Penetration of nitrogen reaching more than 20 gm was achieved at 450 degrees C and hardness as high as 1340 HV (factor of 2.7 enhancement over standard tempered and annealed H 13) was reached by a high power, 9 h Pill treatment. The corrosion behavior of the samples was studied by potentiodynamic polarization method. The noblest corrosion behavior was observed for the samples treated by PIII at 450 degrees C, during 9 h. Anodic branches of polarization curves of PIII processed samples show a passive region associated with the formation of a protective film. The passive region current density of PIII treated H13 samples (3.5 x 10(-6) A/cm(2)) is about 270 times lower than the one of untreated specimens, which demonstrates the higher corrosion resistance for the Pill treated H 13 samples. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500 degrees C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500 degrees C for 4h, which presented the formation of Al2TiO5.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Stainless steels are used to intake and exhaust valves production applied as internal combustion engines. In general valves are requested to support cyclic stresses applied due to opening and closing processes during the operation. The objective of this research is to study the influence on the axial fatigue strength of the resulting microstructure after heat treatment at the martensitic X45CrSi93 steel, combined with different surface treatments as hard chrome-plating, nitride and grinding. It was verified a significant increase on the fatigue strength of the martensitic steel after nitriding, compared with results from the chrome-plating specimens. A slight increase in the tensile strength was also noticed on nitrided parts as a consequence of a resistance increase due to nitrogen and carbon solid solution. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11
Resumo:
Borate glasses present an absorption coefficient very close to that of human tissue. This fact makes some borates ideal materials to develop medical and environmental dosimeters. Glass compositions with calcium tetraborate (CaB4O7) and calcium metaborate (CaB2O4), such as the xCaB(4)O(7) - (100-x)CaB2O4 System (0 <= x <= 100 wt%) were obtained by the traditional melting/quenching method. A phenomenon widely known as the 'boron anomaly' was observed in our thermal analysis measurements, as indicated by the increase of T, and the appearance of a maximum value in the composition with 40 wt% of CaB2O4. The Dy doped and Li co-doped 80CaB(4)O(7)-20CaB(2)O(4) (Wt%) glass samples were studied by the thermoluminescence technique. The addition of Dy improved the signal sensitivity in about three times with respect to the undoped glass sample. The addition of Li as a co-dopant in this glass caused a shift to a lower temperature of about 20 degrees C in the main glow peak. The structural analysis of the 80CaB(4)O(7)-20CaB(2)O(4) (wt%) undoped and doped samples were studied through infrared absorption. We have noted an increase in the coordination number of the boron atoms from 3 to 4, i.e., the conversion of the BO3 triangular structural units into BO4 tetrahedra. (c) 2006 Elsevier B.V. All rights reserved.