936 resultados para Heterogeneous Nucleation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the current knowledge and understanding of martensitic transformations in ceramics - the tetragonal to monoclinic transformation in zirconia in particular. This martensitic transformation is the key to transformation toughening in zirconia ceramics. A very considerable body of experimental data on the characteristics of this transformation is now available. In addition, theoretical predictions can be made using the phenomenological theory of martensitic transformations. As the paper will illustrate, the phenomenological theory is capable of explaining all the reported microstructural and crystallographic features of the transformation in zirconia and in some other ceramic systems. Hence the theory, supported by experiment, can be used with considerable confidence to provide the quantitative data that is essential for developing a credible, comprehensive understanding of the transformation toughening process. A critical feature in transformation toughening is the shape strain that accompanies the transformation. This shape strain, or nucleation strain, determines whether or not the stress-induced martensitic transformation can occur at the tip of a potentially dangerous crack. If transformation does take place, then it is the net transformation strain left behind in the transformed region that provides toughening by hindering crack growth. The fracture mechanics based models for transformation toughening, therefore, depend on having a full understanding of the characteristics of the martensitic transformation and, in particular, on being able to specify both these strains. A review of the development of the models for transformation toughening shows that their refinement and improvement over the last couple of decades has been largely a result of the inclusion of more of the characteristics of the stress-induced martensitic transformation. The paper advances an improved model for the stress-induced martensitic transformation and the strains resulting from the transformation. This model, which separates the nucleation strain from the subsequent net transformation strain, is shown to be superior to any of the constitutive models currently available. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Utilization of salt affected wasteland by growing forage shrubs has enormous economic and environmental implication for developing countries like Pakistan, where approximately 6.3 million ha of the land is salt affected. Considering the importance of Atriplex and Maireana species, research has been conducted using their different species on the salt affected soils of Faisalabad. Most of Atriplex and Maireana species survived under the environmental conditions of Faisalabad and gave the good yield in the form of forage. Some of these species are woody and can be used for fuel purposes. Sixteen genotypes of Atriplex and Maireana were tested for their tolerance to waterlogging in order to identify halophytic fodder shrubs suitable for growth on secondary salt-affected and waterlogged farmland. The physiological and morphological responses of the species tested were typical of species with a generally poor tolerance to waterlogging. Despite this, some species (e.g., A. amnicola) were surprisingly resistant, surviving up to five months of waterlogging at moderate salinity and high evapotranspirational demand. The most resistant species, A amnicola maintained higher transpiration rates, leaf water potentials and shoot extension rates than most other species during five weeks of waterlogging, and a return to control levels more quickly than other species after plots were drained. Although little morphological adaptation to waterlogged conditions was detected, a shallow and extensive lateral root system and the formation of many short aerenchymatous adventitious roots from procumbent branches appeared to advantage A. amnicola in an environment highly heterogeneous in salinity and low in oxygen concentration. Waterlogging quickly killed shallow fibrous rooted species, although the procumbent branches of some individuals survived as clones if they developed adventitious roots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical analysis of adsorption of mixtures containing subcritical adsorbates into activated carbon is presented as an extension to the theory for pure component developed earlier by Do and coworkers. In this theory, adsorption of mixtures in a pore follows a two-stage process, similar to that for pure component systems. The first stage is the layering of molecules on the surface, with the behavior of the second and higher layers resembling to that of vapor-liquid equilibrium. The second stage is the pore-filling process when the remaining pore width is small enough and the pressure is high enough to promote the pore filling with liquid mixture having the same compositions as those of the outermost molecular layer just prior to pore filling. The Kelvin equation is applied for mixtures, with the vapor pressure term being replaced by the equilibrium pressure at the compositions of the outermost layer of the liquid film. Simulations are detailed to illustrate the effects of various parameters, and the theory is tested with a number of experimental data on mixture. The predictions were very satisfactory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (MORA and PLACE, 1994; PLACE and MORA, 1999). A new modular and flexible LSM approach has been developed that allows different microphysics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by DIETERICH and KILGORE (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance D-c on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid earth simulations have recently been developed to address issues such as natural disasters, global environmental destruction and the conservation of natural resources. The simulation of solid earth phenomena involves the analysis of complex structures including strata, faults, and heterogeneous material properties. Simulation of the generation and cycle of earthquakes is particularly important, but such simulations require the analysis of complex fault dynamics. GeoFEM is a parallel finite-element analysis system intended for solid earth field phenomena problems. This paper describes recent development in the GeoFEM project for the simulation of earthquake generation and cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent identification of several additional members of the family of sugar transport facilitators (gene symbol SLC2A, protein symbol GLUT) has created a heterogeneous and, in part, confusing nomenclature. Therefore, this letter provides a summary of the family members and suggests a systematic nomenclature for SLC2A and GLUT symbols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nervous system contains an abundance of taurine, a neuroactive sulfonic acid. Antibodies were generated against two cloned high-affinity taurine transporters, referred to in this study as TAUT-1 and TAUT-2. The distribution of such was compared with the distribution of taurine in the rat brain, pituitary, and retina. The cellular pattern of [H-3] taurine uptake in brain slices, pituitary slices, and retinas was examined by autoradiography. TAUT-2 was predominantly associated with glial cells, including the Bergmann glial cells of the cerebellum and astrocytes in brain areas such as hippocampus. Low-level labeling for TAUT-2 was also observed in some neurones such as CA1 pyramidal cells. TAUT-1 distribution was more limited; in the posterior pituitary TAUT-1 was associated with the pituicytes but was absent from glial cells in the intermediate and anterior lobes. Conversely, in the brain TAUT-1 was associated with cerebellar Purkinje cells and, in the retina, with photoreceptors and bipolar cells. Our data suggest that intracellular taurine levels in glial cells and neurons may be regulated in part by specific high-affinity taurine transporters. The heterogeneous distribution of taurine and its transporters in the brain does not reconcile well with the possibility that taurine acts solely as a ubiquitous osmolyte in nervous tissues. (C) 2002 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amelogenesis imperfectas (Al) area geneticatly heterogeneous group of diseases that result in defective development of tooth enamel. Although X-linked, autosomal. dominant and autosomal. recessive forms of Al have been clinically characterized, only two genes (AMELX and ENAM) have been associated with Al. To date, three enamelin (ENAM) mutations have been identified. These mutations cause phenotypically diverse forms of autosomal. dominant Al. Detailed phenotype-genotype correlations have not been performed for autosomal. dominant Al due to ENAM mutations. We identified a previously unreported kindred segregating for the ENAM mutation, g.8344delG. Light and electron microscopy analyses of unerupted permanent teeth show the enamel is markedly reduced in thickness, Lacks a prismatic structure and has a laminated appearance. Taken together these histological features support the enamelin protein as being critical for the development of a normal. enamel. thickness and that it Likely has a role in regulating c-axis crystallite growth. Because there is growing molecular and phenotypic diversity in the enamelin defects, it is critical to have a nomenclature and numbering system for characterizing these conditions. We present a standardized nomenclature for ENAM mutations that will allow consistent reporting and communication. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blasting has been the most frequently used method for rock breakage since black powder was first used to fragment rocks, more than two hundred years ago. This paper is an attempt to reassess standard design techniques used in blasting by providing an alternative approach to blast design. The new approach has been termed asymmetric blasting. Based on providing real time rock recognition through the capacity of measurement while drilling (MWD) techniques, asymmetric blasting is an approach to deal with rock properties as they occur in nature, i.e., randomly and asymmetrically spatially distributed. It is well accepted that performance of basic mining operations, such as excavation and crushing rely on a broken rock mass which has been pre conditioned by the blast. By pre-conditioned we mean well fragmented, sufficiently loose and with adequate muckpile profile. These muckpile characteristics affect loading and hauling [1]. The influence of blasting does not end there. Under the Mine to Mill paradigm, blasting has a significant leverage on downstream operations such as crushing and milling. There is a body of evidence that blasting affects mineral liberation [2]. Thus, the importance of blasting has increased from simply fragmenting and loosing the rock mass, to a broader role that encompasses many aspects of mining, which affects the cost of the end product. A new approach is proposed in this paper which facilitates this trend 'to treat non-homogeneous media (rock mass) in a non-homogeneous manner (an asymmetrical pattern) in order to achieve an optimal result (in terms of muckpile size distribution).' It is postulated there are no logical reasons (besides the current lack of means to infer rock mass properties in the blind zones of the bench and onsite precedents) for drilling a regular blast pattern over a rock mass that is inherently heterogeneous. Real and theoretical examples of such a method are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predisposition to melanoma is genetically heterogeneous. Two high penetrance susceptibility genes, CDKN2A and CDK4, have so far been identified and mapping is ongoing to localize and identify others. With the advent of a catalogue of millions of potential DNA polymorphisms, attention is now also being focused on identification of genes that confer a more modest contribution to melanoma risk, such as those encoding proteins involved in pigmentation, DNA repair, cell growth and differentiation or detoxification of metabolites. One such pigmentation gene, MC1R, has not only been found to be a low penetrance melanoma gene but has also been shown to act as a genetic modifier of melanoma risk in individuals carrying CDKN2A mutations. Most recently, an environmental agent, ultraviolet radiation, has also been established as a modifier of melanoma risk in CDKN2A mutation carriers. Hence, melanoma is turning out to be an excellent paradigm for studying gene-gene and gene-environment interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Epstein-Barr virus latent membrane protein (LMP 1) functions as a constitutively active signalling molecule and associates in lipid rafts clustered with other signalling molecules. Using immunofluorescent confocal microscopy, LMP 1 was shown to have an heterogeneous distribution among individual cells which was not related to the cell cycle stage. LMP 1 was shown to localize to intracellular compartments in cells other than the plasma membrane, Co-labelling of cells with both an LIMP 1 antibody and an antibody to the Golgi protein GS15 revealed that the intracellular LMP 1 partly co-localized with the Golgi apparatus. Further confirmation of intracellular LMP 1 localization was obtained by immunoelectron microscopy with rabbit polyclonal LIMP 1 antibodies and cryosectioning. As well as being present in intracellular foci, LMP 1 co-localized in part with MHC-II and was present on exosomes derived from a lymphoblastoid cell line. Preparations of LMP 1 containing exosomes were shown to inhibit the proliferation of peripheral blood mononuclear cells, suggesting that LIMP 1 could be involved in immune regulation. This may be of particular relevance in EBV-associated tumours such as nasopharyngeal carcinoma and Hodgkin's disease, as LMP 1-containing exosomes may be taken up by infiltrating T-lymphocytes, where LMP 1 could exert an anti-proliferative effect, allowing the tumour cells to evade the immune system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific neuronal mRNAs are localized in dendrites, often concentrated in dendritic spines and spine synapses, where they are translated. The molecular mechanism of localization is mostly unknown. Here we have explored the roles of A2 response element (A2RE), a cis-acting signal for oligodendrocyte RNA trafficking, and its cognate trans-acting factor, heterogeneous nuclear ribonucleoprotein ( hnRNP) A2, in neurons. Fluorescently labeled chimeric RNAs containing A2RE were microinjected into hippocampal neurons, and RNA transport followed using confocal laser scanning microscopy. These RNA molecules, but not RNA lacking the A2RE sequence, were transported in granules to the distal neurites. hnRNP A2 protein was implicated as the cognate trans-acting factor: it was colocalized with RNA in cytoplasmic granules, and RNA trafficking in neurites was compromised by A2RE mutations that abrogate hnRNP A2 binding. Coinjection of antibodies to hnRNP A2 halved the number of trafficking cells, and treatment of neurons with antisense oligonucleotides also disrupted A2RE - RNA transport. Colchicine inhibited trafficking, whereas cells treated with cytochalasin were unaffected, implicating involvement of microtubules rather than microfilaments. A2RE-like sequences are found in a subset of dendritically localized mRNAs, which, together with these results, suggests that a molecular mechanism based on this cis-acting sequence may contribute to dendritic RNA localization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A research program on atmospheric boundary layer processes and local wind regimes in complex terrain was conducted in the vicinity of Lake Tekapo in the southern Alps of New Zealand, during two 1-month field campaigns in 1997 and 1999. The effects of the interaction of thermal and dynamic forcing were of specific interest, with a particular focus on the interaction of thermal forcing of differing scales. The rationale and objectives of the field and modeling program are described, along with the methodology used to achieve them. Specific research aims include improved knowledge of the role of surface forcing associated with varying energy balances across heterogeneous terrain, thermal influences on boundary layer and local wind development, and dynamic influences of the terrain through channeling effects. Data were collected using a network of surface meteorological and energy balance stations, radiosonde and pilot balloon soundings, tethered balloon and kite-based systems, sodar, and an instrumented light aircraft. These data are being used to investigate the energetics of surface heat fluxes, the effects of localized heating/cooling and advective processes on atmospheric boundary layer development, and dynamic channeling. A complementary program of numerical modeling includes application of the Regional Atmospheric Modeling System (RAMS) to case studies characterizing typical boundary layer structures and airflow patterns observed around Lake Tekapo. Some initial results derived from the special observation periods are used to illustrate progress made to date. In spite of the difficulties involved in obtaining good data and undertaking modeling experiments in such complex terrain, initial results show that surface thermal heterogeneity has a significant influence on local atmospheric structure and wind fields in the vicinity of the lake. This influence occurs particularly in the morning. However, dynamic channeling effects and the larger-scale thermal effect of the mountain region frequently override these more local features later in the day.